Skip to main content
Log in

On φ-Families of Probability Distributions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We generalize the exponential family of probability distributions. In our approach, the exponential function is replaced by a φ-function, resulting in a φ-family of probability distributions. We show how φ-families are constructed. In a φ-family, the analogue of the cumulant-generating function is a normalizing function. We define the φ-divergence as the Bregman divergence associated to the normalizing function, providing a generalization of the Kullback–Leibler divergence. A formula for the φ-divergence where the φ-function is the Kaniadakis κ-exponential function is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191. Am. Math. Soc., Providence (2000). Translated from the 1993 Japanese original by Daishi Harada

    MATH  Google Scholar 

  2. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  Google Scholar 

  3. Cena, A., Pistone, G.: Exponential statistical manifold. Ann. Inst. Stat. Math. 59(1), 27–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gibilisco, P., Riccomagno, E., Rogantin, M.P., Wynn, H.P. (eds.): Algebraic and Geometric Methods in Statistics. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Grasselli, M.R.: Dual connections in nonparametric classical information geometry. Ann. Inst. Stat. Math. 62(5), 873–896 (2010)

    Article  MathSciNet  Google Scholar 

  6. Kaniadakis, G.: Statistical mechanics in the context of special relativity. Phys. Rev. E 66(5), 056125 (2002)

    Article  MathSciNet  Google Scholar 

  7. Krasnosel’skiĭ, M.A., Rutickiĭ, J.B.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1961). Translated from the first Russian edition by Leo F. Boron

    Google Scholar 

  8. Lang, S.: Differential and Riemannian Manifolds. Graduate Texts in Mathematics, vol. 160, 3rd edn. Springer, New York (1995)

    Book  MATH  Google Scholar 

  9. Murray, M.K., Rice, J.W.: Differential Geometry and Statistics. Monographs on Statistics and Applied Probability, vol. 48. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  10. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

    MATH  Google Scholar 

  11. Naudts, J.: Generalised Thermostatistics. Springer, London (2011)

    Book  MATH  Google Scholar 

  12. Petz, D.: Quantum Information Theory and Quantum Statistics. Theoretical and Mathematical Physics. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. Pistone, G.: κ-exponential models from the geometrical viewpoint. Eur. Phys. J. B 70(1), 29–37 (2009)

    Article  MATH  Google Scholar 

  14. Pistone, G., Rogantin, M.P.: The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli 5(4), 721–760 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Stat. 23(5), 1543–1561 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Dekker, New York (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to the anonymous referees for significant comments and suggestions leading to the current version. This work received financial support from CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui F. Vigelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigelis, R.F., Cavalcante, C.C. On φ-Families of Probability Distributions. J Theor Probab 26, 870–884 (2013). https://doi.org/10.1007/s10959-011-0400-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-011-0400-5

Keywords

Mathematics Subject Classification (2000)

Navigation