Skip to main content
Log in

A Universality Property of Gaussian Analytic Functions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider random analytic functions defined on the unit disk of the complex plane \(f(z) = \sum_{n=0}^{\infty} a_{n} X_{n} z^{n}\), where the X n ’s are i.i.d., complex-valued random variables with mean zero and unit variance. The coefficients a n are chosen so that f(z) is defined on a domain of ℂ carrying a planar or hyperbolic geometry, and \(\mathbf{E}f(z)\overline{f(w)}\) is covariant with respect to the isometry group. The corresponding Gaussian analytic functions have been much studied, and their zero sets have been considered in detail in a monograph by Hough, Krishnapur, Peres, and Virág. We show that for non-Gaussian coefficients, the zero set converges in distribution to that of the Gaussian analytic functions as one transports isometrically to the boundary of the domain. The proof is elementary and general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baez, J.: The Beauty of Roots. November 2009, http://math.ucr.edu/home/baez/roots/

  2. Bharucha-Reid, A.T., Sambandham, M.: Random Polynomials. Academic Press, Orlando (1986)

    MATH  Google Scholar 

  3. Bleher, P., Di, X.: Correlations between zeros of a random polynomial. J. Stat. Phys. 88, 269–305 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bleher, P., Shiffman, B., Zelditch, S.: Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142, 351–395 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bleher, P., Shiffman, B., Zelditch, S.: Correlations between zeros and supersymmetry. Commun. Math. Phys. 224, 255–269 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogomolny, E., Bohigas, O., Leboeuf, P.: Distributions of roots of random polynomials. Phys. Rev. Lett. 68, 2726–2729 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85, 639–679 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. 32, 1–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben Hough, J., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  10. Ibragimov, I., Zeitouni, O.: On roots of random polynomials. Trans. Am. Math. Soc. 349(6), 2427–2441 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kahane, J.-P.: Some Random Series of Functions. Raytheon Education Co., Lexington (1968)

    MATH  Google Scholar 

  12. Kostlan, E.: On the distribution of roots of random polynomials. In: From Topology to Computation: Proceedings of the Smalefest, Berkeley, CA, 1990. Springer, New York (1993)

    Google Scholar 

  13. Nazarov, F., Sodin, M.: What is … a Gaussian entire function? Not. Am. Math. Soc. 57(3), 375–377 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Peres, Y., Virág, B.: Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Math. 149, 1–35 (2005)

    Article  Google Scholar 

  15. Shepp, L., Vanderbei, R.J.: The complex zeros of random polynomials. Trans. Am. Math. Soc. 347(11), 4365–4384 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shub, M., Smale, S.: Complexity of Bezout’s theorem. I. Geometric aspects. J. Am. Math. Soc. 6, 459–501 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Valko, B., Virág, B.: Random Schrödinger operators on long boxes, noise explosion and the GOE. Preprint, arXiv:0912.0097

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon Starr.

Additional information

The work of S.S. was supported in part by a U.S. National Science Foundation grant DMS-0706927. The work of M.M. was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant 205247.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledoan, A., Merkli, M. & Starr, S. A Universality Property of Gaussian Analytic Functions. J Theor Probab 25, 496–504 (2012). https://doi.org/10.1007/s10959-011-0356-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-011-0356-5

Keywords

Mathematics Subject Classification (2000)

Navigation