Skip to main content
Log in

Limiting Spectral Distribution of Random k-Circulants

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Consider random k-circulants A k,n with n→∞,k=k(n) and whose input sequence {a l } l≥0 is independent with mean zero and variance one and \(\sup_{n}n^{-1}\sum_{l=1}^{n}\mathbb{E}|a_{l}|^{2+\delta}<\infty\) for some δ>0. Under suitable restrictions on the sequence {k(n)} n≥1, we show that the limiting spectral distribution (LSD) of the empirical distribution of suitably scaled eigenvalues exists, and we identify the limits. In particular, we prove the following: Suppose g≥1 is fixed and p 1 is the smallest prime divisor of g. Suppose \(P_{g}=\prod_{j=1}^{g}E_{j}\) where {E j }1≤jg are i.i.d. exponential random variables with mean one.

(i) If k g=−1+sn where s=1 if g=1 and \(s=o(n^{p_{1}-1})\) if g>1, then the empirical spectral distribution of n −1/2 A k,n converges weakly in probability to \(U_{1}P_{g}^{1/(2g)}\) where U 1 is uniformly distributed over the (2g)th roots of unity, independent of P g .

(ii) If g≥2 and k g=1+sn with \(s=o(n^{p_{1}-1})\), then the empirical spectral distribution of n −1/2 A k,n converges weakly in probability to \(U_{2}P_{g}^{1/(2g)}\) where U 2 is uniformly distributed over the unit circle in ℝ2, independent of P g .

On the other hand, if k≥2, k=n o(1) with gcd (n,k)=1, and the input is i.i.d. standard normal variables, then \(F_{n^{-1/2}A_{k,n}}\) converges weakly in probability to the uniform distribution over the circle with center at (0,0) and radius \(r=\exp(\mathbb{E}[\log\sqrt{E}_{1}])\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z.D.: Methodologies in spectral analysis of large dimensional random matrices, a review. Stat. Sin. 9, 611–677 (1999) (with discussions)

    MATH  Google Scholar 

  2. Basak, A., Bose, A.: Limiting spectral distributions of some band matrices. Technical report R16/2009, Stat-math Unit, Indian Statistical Institute. Available at www.isical.ac.in/~statmath. Period. Math. Hung. To appear (2010)

  3. Bhattacharya, R.N., Ranga Rao, R.: Normal Approximation and Asymptotic Expansions, 1st edn. Wiley, New York (1976)

    MATH  Google Scholar 

  4. Bose, A., Mitra, J.: Limiting spectral distribution of a special circulant. Stat. Probab. Lett. 60(1), 111–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bose, A., Sen, A.: Another look at the moment method for large dimensional random matrices. Electron. J. Probab. 13, 588–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bose, A., Hazra, R.S., Saha, K.: Limiting spectral distribution of circulant type matrices with dependent inputs. Electron. J. Probab. 14(86), 2463–2491 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Bose, A., Gangopadhyay, S., Sen, A.: Limiting spectral distribution of XX′ matrices. Annal. Inst. H. Poincaré 46(3), 677–707 (2010). doi:10.1214/09-AIHP329

    Article  MathSciNet  MATH  Google Scholar 

  8. Bryc, W., Dembo, A., Jiang, T.: Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34(1), 1–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, P.J.: Circulant Matrices. Wiley, New York (1979)

    MATH  Google Scholar 

  10. Davis, R.A., Mikosch, T.: The maximum of the periodogram of a non-Gaussian sequence. Annal. Probab. 27(1), 522–536 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, J., Yao, Q.: Nonlinear Time Series. Nonparametric and Parametric Methods. Springer Series in Statistics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  12. Georgiou, S., Koukouvinos, C.: Multi-level k-circulant supersaturated designs. Metrika 64(2), 209–220 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Now Publishers, Norwell (2009)

    Google Scholar 

  14. Guionnet, A., Krishnapur, M., Zeitouni, O.: The single ring theorem. Available at http://front.math.ucdavis.edu/0909.2214 (2009)

  15. Hammond, C., Miller, S.J.: Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theor. Probab. 18(3), 537–566 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kargin, V.: Spectrum of random Toeplitz matrices with band structures. Electron. Commun. Probab. 14(2009), 412–421 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Massey, A., Miller, S.J., Sinsheimer, J.: Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and Circulant matrices. J. Theor. Probab. 20, 637–662 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pollock, D.S.G.: Circulant matrices and time-series analysis. Int. J. Math. Educ. Sci. Technol. 33(2), 213–230 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Strok, V.V.: Circulant matrices and the spectra of de Bruijn graphs. Ukr. Math. J. 44(11), 1446–1454 (1992)

    Article  MathSciNet  Google Scholar 

  20. Wu, Y.K., Jia, R.Z., Li, Q.: g-Circulant solutions to the (0,1) matrix equation A m=J n . Linear Algebra Appl. 345(1–3), 195–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou, J.T.: A formula solution for the eigenvalues of g circulant matrices. Math. Appl. (Wuhan) 9(1), 53–57 (1996)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Bose.

Additional information

A. Bose was partially supported by J.C. Bose Fellowship, Government of India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, A., Mitra, J. & Sen, A. Limiting Spectral Distribution of Random k-Circulants. J Theor Probab 25, 771–797 (2012). https://doi.org/10.1007/s10959-010-0312-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-010-0312-9

Keywords

Mathematics Subject Classification (2000)

Navigation