Journal of Theoretical Probability

, Volume 24, Issue 2, pp 454–478 | Cite as

Weak Error for Stable Driven Stochastic Differential Equations: Expansion of the Densities

  • Valentin Konakov
  • Stéphane MenozziEmail author


Consider a multidimensional stochastic differential equation of the form \(X_{t}=x+\int_{0}^{t}b(X_{s-})\,ds+\int_{0}^{t}f(X_{s-})\,dZ_{s}\), where (Z s )s≥0 is a symmetric stable process. Under suitable assumptions on the coefficients, the unique strong solution of the above equation admits a density with respect to Lebesgue measure, and so does its Euler scheme. Using a parametrix approach, we derive an error expansion with respect to the time step for the difference of these densities.


Symmetric stable processes Parametrix Euler scheme 

Mathematics Subject Classification (2000)

60H30 65C30 60G52 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function. Probab. Theory Relat. Fields 104(1), 43–60 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations, II. Convergence rate of the density. Monte Carlo Methods Appl. 2, 93–128 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bichteler, K., Gravereaux, J.B., Jacod, J.: Malliavin Calculus for Processes with Jumps. Stochastics Monographs, vol. 2 (1987) Google Scholar
  4. 4.
    Breiman, L.: Probability. Addison-Wesley, Reading (1968) zbMATHGoogle Scholar
  5. 5.
    Dynkin, E.B.: Markov Processes. Springer, Berlin (1963) zbMATHGoogle Scholar
  6. 6.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York (1966) zbMATHGoogle Scholar
  7. 7.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, New York (1964) zbMATHGoogle Scholar
  8. 8.
    Guyon, J.: Euler scheme and tempered distributions. Stoch. Process. Appl. 116(6), 877–904 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Hausenblas, E.: Error analysis for approximation of stochastic differential equations driven by Poisson random measures. SIAM J. Numer. Anal. 40(1), 87–113 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hausenblas, E., Marchis, J.: A numerical approximation of parabolic stochastic partial differential equations driven by a Poisson random measure. BIT Numer. Math. 46, 773–811 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Imkeller, P., Pavlyukevich, I.: First exit times of SDEs driven by stable Lévy processes. Stoch. Process. Appl. 116(4), 611–642 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Jacod, J.: The Euler scheme for Lévy driven stochastic differential equations: limit theorems. Ann. Probab. 5(32), 1830–1872 (2004) MathSciNetGoogle Scholar
  13. 13.
    Jacod, J., Kurtz, T.G., Méléard, S., Protter, P.: The approximate Euler method for Lévy driven stochastic differential equations. Ann. Inst. H. Poincaré Probab. Stat. 41(3), 523–558 (2005) CrossRefzbMATHGoogle Scholar
  14. 14.
    Janicki, A., Michna, Z., Weron, A.: Approximation of stochastic differential equations driven by α-stable Lévy motion. Appl. Math. (Warsaw) 24(2), 149–168 (1996) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Kolokoltsov, V.: Symmetric stable laws and stable-like jump diffusions. Proc. Lond. Math. Soc. 80, 725–768 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Konakov, V., Mammen, E.: Local limit theorems for transition densities of Markov chains converging to diffusions. Probab. Theory Relat. Fields 117, 551–587 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Konakov, V., Mammen, E.: Edgeworth type expansions for Euler schemes for stochastic differential equations. Monte Carlo Methods Appl. 8(3), 271–285 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Konakov, V., Menozzi, S.: Weak error for stable driven SDEs: expansion of the densities. Tech. Report LPMA (2010).
  19. 19.
    Konakov, V., Menozzi, S., Molchanov, S.: Explicit parametrix and local limit theorems for some degenerate diffusion processes. Tech. Report LPMA (2008) Google Scholar
  20. 20.
    McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43–69 (1967) zbMATHMathSciNetGoogle Scholar
  21. 21.
    Picard, J.: On the existence of smooth densities for jump processes. Probab. Theory Relat. Fields 105, 481–511 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Protter, P.: Stochastic Integration and Differential Equations. Application of Mathematics, vol. 21. Springer, Berlin (2004) zbMATHGoogle Scholar
  23. 23.
    Protter, P., Talay, D.: The Euler scheme for Lévy driven stochastic differential equations. Ann. Probab. 1(25), 393–423 (1997) MathSciNetGoogle Scholar
  24. 24.
    Samorodnittsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes, Stochastic Models with Infinite Variance. Chapman and Hall, New York (1994) Google Scholar
  25. 25.
    Stuck, B.W., Kleiner, B.Z.: A statistical analysis of telephone noise. Bell Syst. Tech. J. 53, 1263–1320 (1974) Google Scholar
  26. 26.
    Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8(4), 94–120 (1990) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Weron, A., Weron, R.: Computer simulation of Lévy α-stable variables and processes. In: Lecture Notes in Physics, vol. 457, pp. 379–392. Springer, Berlin (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.CEMIAcademy of SciencesMoscowRussia
  2. 2.LPMAUniversité Paris VII DiderotParisFrance

Personalised recommendations