Skip to main content
Log in

On Concentration of Empirical Measures and Convergence to the Semi-circle Law

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Concentration properties of the general empirical distribution functions and the rate of convergence of spectral empirical distributions to the semi-circle law in the case of symmetric high-dimensional random matrices are studied under Poincaré-type inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida, S., Stroock, D.: Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett. 1, 75–86 (1994)

    MATH  MathSciNet  Google Scholar 

  2. Bai, Z.D.: Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices. Ann. Probab. 21, 625–648 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bai, Z.D., Miao, B., Tsay, J.: Convergence rates of the spectral distributions of large Wigner matrices. Int. Math. J. 1(1), 65–90 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997) xii+347 pp

    Google Scholar 

  5. Bobkov, S.G.: Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27(4), 1903–1921 (1999)

    Article  MathSciNet  Google Scholar 

  6. Bobkov, S.G., Götze, F.: Discrete isoperimetric and Poincare-type inequalities. Probab. Theory Relat. Fields 114(2), 245–277 (1999)

    Article  MATH  Google Scholar 

  7. Bobkov, S.G., Götze, F.: Hardy-type inequalities via Riccati and Sturm-Liouville equations. In: Maz’ya, V. (ed.) Intern. Math. Series. Sobolev Spaces in Mathematics I, Sobolev Type Inequalities, vol. 8, pp. 69–86. Springer, Berlin (2008)

    Google Scholar 

  8. Bobkov, S.G., Götze, F.: Concentration of empirical distribution functions with applications to non i.i.d. models. Preprint (2008). To appear in: Bernoulli

  9. Bobkov, S.G., Götze, F., Tikhomirov, A.N.: On the concentration of high-dimensioanal matrices with randomly signed entries. J. Math. Sci. 163(4), 328–351 (2009)

    Article  Google Scholar 

  10. Bobkov, S.G., Houdré, C.: Weak dimension-free concentration of measure. Bernoulli 6(4), 621–632 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bobkov, S.G., Ledoux, M.: Poincare’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Relat. Fields 107, 383–400 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bobkov, S.G., Ledoux, M.: Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37(2), 403–427 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Borovkov, A.A., Utev, S.A.: On an inequality and a characterization of the normal distribution connected with it. Probab. Theory Appl. 28, 209–218 (1983)

    MATH  MathSciNet  Google Scholar 

  14. Chatterjee, S., Bose, A.: A new method for bounding rates of convergence of empirical spectral distributions. J. Theor. Probab. 17(4), 1003–1019 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Davidson, K.R., Szarek, S.J.: Local operator theory, random matrices and Banach spaces. In: Handbook of the Geometry of Banach spaces, vol. I, pp. 317–366. North-Holland, Amsterdam (2001)

    Chapter  Google Scholar 

  16. Erdös, L., Schlein, B., Yau, H.-T.: Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287(2), 641–655 (2009)

    Article  MATH  Google Scholar 

  17. Erdös, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Girko, V.L.: Extended proof of the statement: convergence rate of the expected spectral functions of symmetric random matrices Ξ n is equal to O(n −1/2) and the method of critical steepest descent. Random Oper. Stoch. Equ. 10, 253–300 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Götze, F., Tikhomirov, A.N.: Rate of convergence to the semi-circular law. Probab. Theory Relat. Fields 127(2), 228–276 (2003)

    Article  MATH  Google Scholar 

  20. Götze, F., Tikhomirov, A.N.: The rate of convergence for spectra of GUE and LUE matrix ensembles. Cent. Eur. J. Math. 3(4), 666–704 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  21. Götze, F., Tikhomirov, A.N., Timushev, D.A.: Rate of convergence to the semi-circle law for the deformed Gaussian unitary ensemble. Cent. Eur. J. Math. 5(2), 305–334 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gromov, M., Milman, V.D.: A topological application of the isoperimetric inequality. Am. J. Math. 105, 843–854 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Guionnet, A., Zeitouni, O.: Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5, 119–136 (2000)

    MATH  MathSciNet  Google Scholar 

  24. Kac, I.S., Krein, M.G.: Criteria for the discreteness of the spectrum of a singular string. Izv. Vysš. Učebn. Zaved. Mat. 2(3), 136–153 (1958) (in Russian)

    MathSciNet  Google Scholar 

  25. Ledoux, M.: The concentration of measure phenomenon. Math. Surveys and Monogr aphs, vol. 89. AMS (2001)

  26. Ledoux, M.: Deviation inequalities on largest eigenvalues. In: Geom. Aspects of Funct. Anal., Israel Seminar 2004–2005. Lecture Notes in Math., vol. 1910, pp. 167–219. Springer, Berlin (2007)

    Chapter  Google Scholar 

  27. Maz’ya, V.G.: Sobolev spaces. Springer, Berlin and New York (1985)

    Google Scholar 

  28. Muckenhoupt, B.: Hardy’s inequality with weights. Studia Math. XLIV, 31–38 (1972)

    MathSciNet  Google Scholar 

  29. Pastur, L.A.: The spectrum of random matrices. Teoret. Mat. Fiz. 10(1), 102–112 (1972) (in Russian)

    MathSciNet  Google Scholar 

  30. Pastur, L.A.: Spectra of random selfadjoint operators. Usp. Mat. Nauk 28(1), 3–64 (1973) (169) (in Russian)

    MATH  MathSciNet  Google Scholar 

  31. Timushev, D.A.: On the rate of convergence in probability of the spectral distribution function of a random matrix. Theory Probab. Appl. 51(3), 546–549 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Bobkov.

Additional information

Research partially supported by NSF grant DMS-0706866, SFB 701, RFBR grant N07-01-00583-a, and RF grant of the leading scientific schools NSh-638.2008.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobkov, S.G., Götze, F. & Tikhomirov, A.N. On Concentration of Empirical Measures and Convergence to the Semi-circle Law. J Theor Probab 23, 792–823 (2010). https://doi.org/10.1007/s10959-010-0286-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-010-0286-7

Keywords

Mathematics Subject Classification (2000)

Navigation