Skip to main content
Log in

Bismut–Elworthy–Li-Type Formulae for Stochastic Differential Equations with Jumps

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider jump-type stochastic differential equations with drift, diffusion, and jump terms. Logarithmic derivatives of densities for the solution process are studied, and Bismut–Elworthy–Li-type formulae are obtained under the uniformly elliptic condition on the coefficients of the diffusion and jump terms. Our approach is based upon the Kolmogorov backward equation by making full use of the Markov property of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bally, V., Bavouzet, M.-P., Messaoud, M.: Integration by parts formula for locally smooth laws and applications to sensitivity computations. Ann. Appl. Probab. 17, 33–66 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bichteler, K., Gravereaux, J.-B., Jacod, J.: Malliavin Calculus for Processes with Jumps. Gordon and Breach, New York (1987)

    MATH  Google Scholar 

  3. Bismut, J.M.: Calcul des variations stochastique et processus de saut. Z. Wahrscheinlichkeiststheor. Verw. Geb. 63, 147–235 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bismut, J.M.: Large Deviations and the Malliavin Calculus. Birkhäuser, Boston (1984)

    MATH  Google Scholar 

  5. Cass, T.R., Friz, P.K.: The Bismut–Elworthy–Li formula for jump-diffusions and applications to Monte Carlo methods in finance. arXiv:math/0604311 [math:PR] (2007)

  6. Davis, M.H.A., Johansson, M.P.: Malliavin Monte Carlo Greeks for jump diffusions. Stoch. Process. Appl. 116, 101–129 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. El-Khatib, Y., Privault, N.: Computations of Greeks in a market with jumps via the Malliavin calculus. Finance Stoch. 8, 161–179 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Elworthy, K.D., Li, X.-M.: Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125, 252–286 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fournié, E., Lasry, J.M., Lebuchoux, J., Lions, P.L., Touzi, N.: Applications of Malliavin calculus to Monte-Carlo methods in finance. Finance Stoch. 3, 391–412 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujiwara, T., Kunita, H.: Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group. J. Math. Kyoto Univ. 25, 71–106 (1985)

    MATH  MathSciNet  Google Scholar 

  11. Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations. Springer, New York (1972)

    MATH  Google Scholar 

  12. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  13. Ishikawa, Y., Kunita, H.: Malliavin calculus on the Wiener–Poisson space and its applications to canonical SDE with jumps. Stoch. Process. Appl. 116, 1743–1769 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kawai, R., Takeuchi, A.: Greeks formulae for an asset price dynamics model with gamma processes, Math. Finance (2010, to appear)

  15. Komatsu, T., Takeuchi, A.: On the smoothness of pdf of solutions to SDE of jump type. Int. J. Differ. Equ. Appl. 2, 141–197 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Komatsu, T., Takeuchi, A.: Generalized Hörmander theorem for non-local operators. In: Albeverio, S., et al. (eds.) Recent Developments in Stochastic Analysis and Related Topics, pp. 234–245. World Scientific, Singapore (2004)

    Google Scholar 

  17. Kunita, H.: Representation of martingales with jumps and applications to mathematical finance. In: Kunita, H., et al. (eds.) Stochastic Analysis and Related Topics, pp. 209–232. Mathematical Society of Japan, Tokyo (2004)

    Google Scholar 

  18. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  19. Picard, J.: On the existence of smooth densities for jump processes. Probab. Theory Relat. Fields 105, 481–511 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Takeuchi, A.: Remarks on logarithmic derivatives of densities for degenerate stochastic differential equations with jumps (2010, in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, A. Bismut–Elworthy–Li-Type Formulae for Stochastic Differential Equations with Jumps. J Theor Probab 23, 576–604 (2010). https://doi.org/10.1007/s10959-010-0280-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-010-0280-0

Keywords

Mathematics Subject Classification (2000)

Navigation