Abstract
Integral expressions for positive-part moments \(\mathsf{E}\,X_{+}^{p}\) (p>0) of random variables X are presented, in terms of the Fourier–Laplace or Fourier transforms of the distribution of X. A necessary and sufficient condition for the validity of such an expression is given. This study was motivated by extremal problems in probability and statistics, where one needs to evaluate such positive-part moments.
This is a preview of subscription content, access via your institution.
References
Bentkus, V.: A remark on the inequalities of Bernstein, Prokhorov, Bennett, Hoeffding, and Talagrand. Lith. Math. J. 42, 262–269 (2002)
Bentkus, V.: An inequality for tail probabilities of martingales with differences bounded from one side. J. Theor. Probab. 16, 161–173 (2003)
Bentkus, V.: On Hoeffding’s inequalities. Ann. Probab. 32, 1650–1673 (2004)
Bentkus, V., Kalosha, N., van Zuijlen, M.C.A.: On domination of tail probabilities of (super)martingales: explicit bounds. Lith. Math. J. 46, 1–43 (2006)
Bentkus, V.: An extension of the Hoeffding inequality to unbounded random variables. Lith. Math. J. 48, 137–157 (2008)
Boas, R.P. Jr.: Lipschitz behavior and integrability of characteristic functions. Ann. Math. Stat. 38, 32–36 (1967)
Boas, R.P. Jr.: Laplace transforms, characteristic functions, and Lipschitz conditions. Publ. Ramanujan Inst. 1, 71–74 (1968/1969)
Brown, B.M.: Characteristic functions, moments, and the central limit theorem. Ann. Math. Stat. 41, 658–664 (1970)
Brown, B.M.: Formulae for absolute moments. J. Austral. Math. Soc. 13, 104–106 (1972)
de la Peña, V.H., Ibragimov, R., Jordan, S.: Option bounds. J. Appl. Probab. 41A, 145–156 (2004)
Eaton, M.L.: A note on symmetric Bernoulli random variables. Ann. Math. Stat. 41, 1223–1226 (1970)
Eaton, M.L.: A probability inequality for linear combinations of bounded random variables. Ann. Stat. 2, 609–614 (1974)
Fortet, R.: Calcul des moments d’une fonction de répartition à partir de sa caractéristique. Bull. Sci. Math. 68(2), 117–131 (1944)
Hsu, P.L.: Absolute moments and characteristic functions. J. Chin. Math. Soc. (N.S.) 1, 257–280 (1951)
Ibragimov, I.A.: On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables. Theor. Probab. Appl. 11, 632–655 (1966)
Kawata, T.: Fourier Analysis in Probability Theory. Academic Press, New York (1972)
Petrov, V.V.: Limit Theorems of Probability Theory. Oxford University Press, New York (1995)
Pinelis, I.: Extremal probabilistic problems and Hotelling’s T 2 test under a symmetry condition. Ann. Stat. 22(1), 357–368 (1994)
Pinelis, I.: Optimal tail comparison based on comparison of moments. In: High dimensional probability, Oberwolfach, 1996. Progr. Probab., vol. 43, pp. 297–314. Birkhäuser, Basel (1998)
Pinelis, I.: Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities. In: Advances in Stochastic Inequalities, Atlanta, GA, 1997. Contemp. Math., vol. 234, pp. 149–168. Am. Math. Soc., Providence (1999)
Pinelis, I.: L’Hospital type rules for monotonicity: applications to probability inequalities for sums of bounded random variables. J. Inequal. Pure Appl. Math. 3(1), 7 (2002) (electronic)
Pinelis, I.: Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above. In: High Dimensional Probability, Institute of Mathematical Statistics. IMS Lecture Notes-Monograph Series, vol. 51 (2006). doi:10.1214/074921706000000743. http://arxiv.org/abs/math.PR/0512301
Pinelis, I.: Normal domination of (super)martingales. Electron. J. Probab. 11, 1049–1070 (2006). http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1648&layout=abstract
Pinelis, I.: Exact inequalities for sums of asymmetric random variables, with applications. Probab. Theory Relat. Fields 139, 605–635 (2007)
Pinelis, I.: On the Bennett–Hoeffding inequality. Preprint arXiv:0902.4058
Pinelis, I.: Positive-part moments via the Fourier–Laplace transform. Preprint arXiv:0902.4214v1
Pitman, E.J.G.: On the derivatives of a characteristic function at the origin. Ann. Math. Stat. 27, 1156–1160 (1956)
von Bahr, B.: On the convergence of moments in the central limit theorem. Ann. Math. Stat. 36, 808–818 (1965)
Zygmund, A.: A remark on characteristic functions. Ann. Math. Stat. 18, 272–276 (1947)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by NSF grant DMS-0805946
Rights and permissions
About this article
Cite this article
Pinelis, I. Positive-Part Moments via the Fourier–Laplace Transform. J Theor Probab 24, 409–421 (2011). https://doi.org/10.1007/s10959-010-0276-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10959-010-0276-9
Keywords
- Positive-part moments
- Characteristic functions
- Fourier transforms
- Fourier–Laplace transforms
- Integral representations
Mathematics Subject Classification (2000)
- 60E10
- 42A38
- 60E07
- 60E15
- 42A55
- 42A61