Skip to main content

Positive-Part Moments via the Fourier–Laplace Transform

Abstract

Integral expressions for positive-part moments \(\mathsf{E}\,X_{+}^{p}\) (p>0) of random variables X are presented, in terms of the Fourier–Laplace or Fourier transforms of the distribution of X. A necessary and sufficient condition for the validity of such an expression is given. This study was motivated by extremal problems in probability and statistics, where one needs to evaluate such positive-part moments.

This is a preview of subscription content, access via your institution.

References

  1. Bentkus, V.: A remark on the inequalities of Bernstein, Prokhorov, Bennett, Hoeffding, and Talagrand. Lith. Math. J. 42, 262–269 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bentkus, V.: An inequality for tail probabilities of martingales with differences bounded from one side. J. Theor. Probab. 16, 161–173 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bentkus, V.: On Hoeffding’s inequalities. Ann. Probab. 32, 1650–1673 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bentkus, V., Kalosha, N., van Zuijlen, M.C.A.: On domination of tail probabilities of (super)martingales: explicit bounds. Lith. Math. J. 46, 1–43 (2006)

    Article  MATH  Google Scholar 

  5. Bentkus, V.: An extension of the Hoeffding inequality to unbounded random variables. Lith. Math. J. 48, 137–157 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boas, R.P. Jr.: Lipschitz behavior and integrability of characteristic functions. Ann. Math. Stat. 38, 32–36 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boas, R.P. Jr.: Laplace transforms, characteristic functions, and Lipschitz conditions. Publ. Ramanujan Inst. 1, 71–74 (1968/1969)

    MathSciNet  Google Scholar 

  8. Brown, B.M.: Characteristic functions, moments, and the central limit theorem. Ann. Math. Stat. 41, 658–664 (1970)

    Article  MATH  Google Scholar 

  9. Brown, B.M.: Formulae for absolute moments. J. Austral. Math. Soc. 13, 104–106 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  10. de la Peña, V.H., Ibragimov, R., Jordan, S.: Option bounds. J. Appl. Probab. 41A, 145–156 (2004)

    Article  MATH  Google Scholar 

  11. Eaton, M.L.: A note on symmetric Bernoulli random variables. Ann. Math. Stat. 41, 1223–1226 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eaton, M.L.: A probability inequality for linear combinations of bounded random variables. Ann. Stat. 2, 609–614 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fortet, R.: Calcul des moments d’une fonction de répartition à partir de sa caractéristique. Bull. Sci. Math. 68(2), 117–131 (1944)

    MATH  MathSciNet  Google Scholar 

  14. Hsu, P.L.: Absolute moments and characteristic functions. J. Chin. Math. Soc. (N.S.) 1, 257–280 (1951)

    Google Scholar 

  15. Ibragimov, I.A.: On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables. Theor. Probab. Appl. 11, 632–655 (1966)

    Article  Google Scholar 

  16. Kawata, T.: Fourier Analysis in Probability Theory. Academic Press, New York (1972)

    MATH  Google Scholar 

  17. Petrov, V.V.: Limit Theorems of Probability Theory. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  18. Pinelis, I.: Extremal probabilistic problems and Hotelling’s T 2 test under a symmetry condition. Ann. Stat. 22(1), 357–368 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pinelis, I.: Optimal tail comparison based on comparison of moments. In: High dimensional probability, Oberwolfach, 1996. Progr. Probab., vol. 43, pp. 297–314. Birkhäuser, Basel (1998)

    Google Scholar 

  20. Pinelis, I.: Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities. In: Advances in Stochastic Inequalities, Atlanta, GA, 1997. Contemp. Math., vol. 234, pp. 149–168. Am. Math. Soc., Providence (1999)

    Google Scholar 

  21. Pinelis, I.: L’Hospital type rules for monotonicity: applications to probability inequalities for sums of bounded random variables. J. Inequal. Pure Appl. Math. 3(1), 7 (2002) (electronic)

    MathSciNet  Google Scholar 

  22. Pinelis, I.: Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above. In: High Dimensional Probability, Institute of Mathematical Statistics. IMS Lecture Notes-Monograph Series, vol. 51 (2006). doi:10.1214/074921706000000743. http://arxiv.org/abs/math.PR/0512301

  23. Pinelis, I.: Normal domination of (super)martingales. Electron. J. Probab. 11, 1049–1070 (2006). http://www.math.washington.edu/~ejpecp/viewarticle.php?id=1648&layout=abstract

    MATH  MathSciNet  Google Scholar 

  24. Pinelis, I.: Exact inequalities for sums of asymmetric random variables, with applications. Probab. Theory Relat. Fields 139, 605–635 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pinelis, I.: On the Bennett–Hoeffding inequality. Preprint arXiv:0902.4058

  26. Pinelis, I.: Positive-part moments via the Fourier–Laplace transform. Preprint arXiv:0902.4214v1

  27. Pitman, E.J.G.: On the derivatives of a characteristic function at the origin. Ann. Math. Stat. 27, 1156–1160 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  28. von Bahr, B.: On the convergence of moments in the central limit theorem. Ann. Math. Stat. 36, 808–818 (1965)

    Article  MATH  Google Scholar 

  29. Zygmund, A.: A remark on characteristic functions. Ann. Math. Stat. 18, 272–276 (1947)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Pinelis.

Additional information

Supported by NSF grant DMS-0805946

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pinelis, I. Positive-Part Moments via the Fourier–Laplace Transform. J Theor Probab 24, 409–421 (2011). https://doi.org/10.1007/s10959-010-0276-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-010-0276-9

Keywords

  • Positive-part moments
  • Characteristic functions
  • Fourier transforms
  • Fourier–Laplace transforms
  • Integral representations

Mathematics Subject Classification (2000)

  • 60E10
  • 42A38
  • 60E07
  • 60E15
  • 42A55
  • 42A61