Skip to main content
Log in

RETRACTED ARTICLE: Convergence of Weighted Sums for Arrays of Negatively Dependent Random Variables and Its Applications

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

This article was retracted on 18 May 2013

Abstract

We discuss the complete convergence of weighted sums for arrays of rowwise negatively dependent random variables (ND r.v.’s) to linear processes. As an application, we obtain the complete convergence of linear processes based on ND r.v.’s which extends the result of Li et al. (Stat. Probab. Lett. 14:111–114, 1992), including the results of Baum and Katz (Trans. Am. Math. Soc. 120:108–123, 1965), from the i.i.d. case to a negatively dependent (ND) setting. We complement the results of Ahmed et al. (Stat. Probab. Lett. 58:185–194, 2002) and confirm their conjecture on linear processes in the ND case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, S.E., Antonini, R.G., Volodin, A.: On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes. Stat. Probab. Lett. 58, 185–194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amini, M., Bozorgnia, A., Zareei, H.: Strong convergence for weighted sums of negatively dependent random variables. WSEAS Trans. Math. 3(3), 637–640 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Baek, J.I., Kim, T.S., Liang, H.Y.: On the convergence of moving average processes under dependent conditions. Aust. N.Z. J. Stat. 45(3), 331–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baum, L.E., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108–123 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bingham, N.H.: Summability methods and dependent strong laws. Dep. Probab. Stat., 291–300 (1985)

  6. Bingham, N.H., Nili Sani, H.R.: Summability methods and negatively associated random variables. J. Appl. Probab. 41A, 231–238 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bingham, N.H., Rogers, L.C.G.: Summability methods and almost-sure convergence. In: Almost Everywhere Convergence, II, pp. 69–83. Academic Press, San Diego (1991)

    Google Scholar 

  8. Block, H.W., Ting, M.L.: Some concepts of multivariate dependence. Commun. Stat. Theory Methods A 10(8), 749–762 (1981)

    Article  MathSciNet  Google Scholar 

  9. Bozorgnia, A., Patterson, R.F., Taylor, R.L.: Limit theorems for dependent random variables. World Congress Nonlinear Analysis, vol. 92, pp. 1639–1650 (1996)

  10. Brindly, E., Thompson, W.: Dependent and aging aspects of multivariate survival. J. Am. Stat. Assoc. 67, 822–830 (1972)

    Article  Google Scholar 

  11. Brockwell, P.J., Davis, R.A.: Time Series, Theory and Methods, 2nd edn. Springer Series in Statistics. Springer, Berlin (1990)

    Google Scholar 

  12. Burton, R.M., Dehling, H.: Large deviations for some weakly dependent random processes. Stat. Probab. Lett. 9, 397–401 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chandra, T.K., Ghosal, S.: Extensions of the strong law of large numbers of Marcinkiewicz–Zygmund for dependent variables. Acta Math. Hung. 71, 327–336 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chandra, T.K., Ghosal, S.: The strong law of large numbers for weighted average under dependent assumptions. J. Theor. Prob. 9, 797–809 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Y., Zhang, W.: Large deviations for random sums of negatively dependent random variables with consistently varying tails. Stat. Probab. Lett. 77(5), 530–538 (2007)

    Article  MATH  Google Scholar 

  16. Chow, Y.S.: Delayed sums and Borel summability of independent, identically distributed random variables. Bull. Inst. Math. Acad. Sin. 1(2), 207–220 (1973)

    MATH  Google Scholar 

  17. Chow, Y.S., Teicher, H.: Almost certain summability of independent, identically distributed random variables. Ann. Math. Stat. 42, 401–404 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ebrahimi, N., Ghosh, M.: Multivariate negative dependence. Commun. Stat. Theory Methods 89, 625–641 (1981)

    MathSciNet  Google Scholar 

  19. Esary, J.D., Proschan, F.: Relationships among some concepts of bivariate dependence. Ann. Math. Stat. 43, 651–655 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Esary, J.D., Proschan, F., Walkup, D.W.: Association of random variables with applications. Ann. Math. Stat. 38, 1466–1477 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fakhre-Zakeri, I., Lee, S.: A random functional central limit theorem for stationary linear processes generated by martingales. Stat. Probab. Lett. 35, 417–422 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghosal, S., Chandra, T.K.: Complete convergence of martingale arrays. J. Theor. Probab. 11(3), 621–631 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gut, A.: Complete convergence for arrays. Period. Math. Hung. 25, 51–75 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gut, A.: Complete convergence and Cesaro summation for i.i.d. random variables. Probab. Theory Relat. Fields 97, 169–178 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gut, A., Spataru, A.: Precise asymptotics in the Baum–Katz and Davis laws of large numbers. J. Math. Anal. Appl. 248, 233–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hannan, E.J.: Multivariate Time Series. Wiley, New York (1970)

    Book  Google Scholar 

  27. Harris, R.: A multivariate definition for increasing hazard rate distributions. Ann. Math. Stat. 41, 713–717 (1970)

    Article  MATH  Google Scholar 

  28. Hsu, P.L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. USA 33, 25–31 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hu, T.C., Rosalsky, A., Szynal, D., Volodin, A.: On complete convergence for arrays of rowwise independent random elements in Banach spaces. Stoch. Anal. Appl. 17, 963–992 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu, T.C., Li, D., Rosalsky, A., Volodin, A.: On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements. Theory Probab. Appl. 47(3), 455–468 (2001)

    Article  MathSciNet  Google Scholar 

  31. Ibragimov, I.A.: Some limit theorems for stationary processes. Theory Probab. Appl. 7, 349–382 (1962)

    Article  Google Scholar 

  32. Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Stat. 11, 286–295 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jogdeo, K., Patil, G.P.: Probability inequalities for certain multivariate discrete distributions. Sankhya B 37, 158–164 (1975)

    MathSciNet  MATH  Google Scholar 

  34. Karlin, S., Rinott, Y.: Classes of ordering of measures and related correlation inequalities. J. Multivar. Anal. 10, 499–516 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim, T.S., Baek, J.I.: A central limit theorem for stationary linear processes generated by linearly positively quadrant dependent process. Stat. Probab. Lett. 51, 299–305 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kuczmaszewska, A., Szynal, D.: On complete convergence in a Banach space. Int. J. Math. Sci. 17, 1–14 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lai, T.L.: Summability methods for independent identically distributed random variables. Proc. Am. Math. Soc. 45, 253–261 (1974)

    MATH  Google Scholar 

  38. Lehmann, E.L.: Some concepts of dependence. Ann. Math. Stat. 43, 1137–1153 (1966)

    Article  Google Scholar 

  39. Li, D., Rao, M.B., Wang, X.C.: Complete convergence of moving average processes. Stat. Probab. Lett. 14, 111–114 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, D., Rao, M.B., Ting, T.F., Wang, X.C.: Complete convergence and almost sure convergence of weighted sums of random variables. J. Theor. Probab. 8(1), 49–76 (1995)

    Article  MATH  Google Scholar 

  41. Matula, P.: A note on the almost sure convergence of sums of negatively dependent random variables. Stat. Probab. Lett. 15, 209–213 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Matula, P.: On some inequalities for positively and negatively dependent random variables with applications. Publ. Math. Debrecen. 63(4), 511–522 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Taylor, R.L., Patterson, R.F., Bozorgnia, A.: A strong law of large numbers for arrays of rowwise negatively dependent random variables. Stoch. Anal. Appl. 20(3), 643–656 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, J.F., Zhang, L.X.: A Berry–Esseen theorem for weakly negatively dependent random variables and its applications. Acta Math. Hung. 110(3), 293–308 (2006)

    Article  MATH  Google Scholar 

  45. Wang, X., Rao, M.B., Yang, X.: Convergence rates on strong laws of large numbers for arrays of rowwise independent elements. Stoch. Anal. Appl. 11, 115–132 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, L.X.: Complete convergence of moving average processes under dependence assumptions. Stat. Probab. Lett. 30, 165–170 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Il Baek.

Additional information

The Editor-in-Chief of Journal of Theoretical Probability has found that a duplicate of “Convergence ofWeighted Sums for Arrays of Negatively Dependent Random Variables and Its Applications” by Jong-Il Baek and Sung-Tae Park, Journal of Theoretical Probability, Volume 23, Issue 2, pages 362-377, was submitted simultaneously on May 31, 2008 to both this journal and Journal of Statistical Planning and Inference and was published, with the explicit consent of the authors, in Journal of Statistical Planning and Inference many months after it was published in this journal. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper is not under consideration for publication elsewhere. This article thus represents a severe abuse of the scientific publishing system. For this reason, the Editor-in-Chief of Journal of Theoretical Probability, in agreement with the publisher, hereby retracts this article.

The retraction note to this article can be found online at http://dx.doi.org/10.1007/s10959-013-0493-0.

This paper was supported by a Wonkwang University Grant in 2008.

About this article

Cite this article

Baek, JI., Park, ST. RETRACTED ARTICLE: Convergence of Weighted Sums for Arrays of Negatively Dependent Random Variables and Its Applications. J Theor Probab 23, 362–377 (2010). https://doi.org/10.1007/s10959-008-0198-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-008-0198-y

Keywords

Mathematics Subject Classification (2000)

Navigation