Abstract
We establish general estimates for simple random walk on an arbitrary infinite random graph, assuming suitable bounds on volume and effective resistance for the graph. These are generalizations of the results in Barlow et al. (Commun. Math. Phys. 278:385–431, 2008, Sects. 1, 2) and in particular imply the spectral dimension of the random graph. We will also give an application of the results to random walk on a long-range percolation cluster.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Aizenman, M., Newman, C.M.: Discontinuity of the percolation density in one dimensional 1/|x−y|2 Percolation Models. Commun. Math. Phys. 107, 611–647 (1986)
Alexander, S., Orbach, R.: Density of states on fractals: “fractons”. J. Phys. Lett. (Paris) 43, L625–L631 (1982)
Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32, 3024–3084 (2004)
Barlow, M.T., Coulhon, T., Kumagai, T.: Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Commun. Pure Appl. Math. 58, 1642–1677 (2005)
Barlow, M.T., Járai, A.A., Kumagai, T., Slade, G.: Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278, 385–431 (2008)
Barlow, M.T., Kumagai, T.: Random walk on the incipient infinite cluster on trees. Ill. J. Math. 50, 33–65 (2006). (Doob volume)
Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)
Benjamini, I., Berger, N., Yadin, A.: Long-range percolation mixing time. Combin. Probab. Comput. 17, 487–494 (2008). Preprint available at arXiv:math/0703872
Berger, N.: Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys. 226, 531–558 (2002)
Berger, N., Biskup, M.: Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Relat. Fields 137, 83–120 (2007)
Berger, N., Gantert, N., Peres, Y.: The speed of biased random walk on percolation clusters. Probab. Theory Relat. Fields 126, 221–242 (2003)
Croydon, D., Kumagai, T.: Random walks on Galton–Watson trees with infinite variance offspring distribution conditioned to survive. Electron. J. Probab. (2008, to appear). Preprint available at http://www.math.kyoto-u.ac.jp/~kumagai/kumpre.html
Kesten, H.: The incipient infinite cluster in two-dimensional percolation. Probab. Theory Relat. Fields 73, 369–394 (1986)
Kesten, H.: Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22, 425–487 (1986)
Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)
Kozma, G., Nachmias, A.: The Alexander–Orbach conjecture holds in high dimensions. Preprint available at arXiv:0806.1442 (2008)
Mathieu, P., Piatnitski, A.: Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. A 463, 2287–2307 (2007)
Misumi, J.: Estimates on the effective resistance in a long-range percolation on ℤd. J. Math. Kyoto Univ. 48, 389–400 (2008)
Sidoravicius, V., Sznitman, A.-S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129, 219–244 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
T. Kumagai research partially supported by the Grant-in-Aid for Scientific Research (B) 18340027.
J. Misumi research partially supported by the 21 century COE program at Graduate School of Mathematical Sciences, the University of Tokyo.
Rights and permissions
About this article
Cite this article
Kumagai, T., Misumi, J. Heat Kernel Estimates for Strongly Recurrent Random Walk on Random Media. J Theor Probab 21, 910–935 (2008). https://doi.org/10.1007/s10959-008-0183-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10959-008-0183-5