Skip to main content
Log in

Heat Kernel Estimates for Strongly Recurrent Random Walk on Random Media

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We establish general estimates for simple random walk on an arbitrary infinite random graph, assuming suitable bounds on volume and effective resistance for the graph. These are generalizations of the results in Barlow et al. (Commun. Math. Phys. 278:385–431, 2008, Sects. 1, 2) and in particular imply the spectral dimension of the random graph. We will also give an application of the results to random walk on a long-range percolation cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aizenman, M., Newman, C.M.: Discontinuity of the percolation density in one dimensional 1/|xy|2 Percolation Models. Commun. Math. Phys. 107, 611–647 (1986)

    Article  MathSciNet  Google Scholar 

  2. Alexander, S., Orbach, R.: Density of states on fractals: “fractons”. J. Phys. Lett. (Paris) 43, L625–L631 (1982)

    Google Scholar 

  3. Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32, 3024–3084 (2004)

    Article  MathSciNet  Google Scholar 

  4. Barlow, M.T.,  Coulhon, T.,  Kumagai, T.: Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Commun. Pure Appl. Math. 58, 1642–1677 (2005)

    Article  MathSciNet  Google Scholar 

  5. Barlow, M.T., Járai, A.A., Kumagai, T., Slade, G.: Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278, 385–431 (2008)

    Article  Google Scholar 

  6. Barlow, M.T., Kumagai, T.: Random walk on the incipient infinite cluster on trees. Ill. J. Math. 50, 33–65 (2006). (Doob volume)

    MathSciNet  Google Scholar 

  7. Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Benjamini, I., Berger, N., Yadin, A.: Long-range percolation mixing time. Combin. Probab. Comput. 17, 487–494 (2008). Preprint available at arXiv:math/0703872

    Article  Google Scholar 

  9. Berger, N.: Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys. 226, 531–558 (2002)

    Article  Google Scholar 

  10. Berger, N., Biskup, M.: Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Relat. Fields 137, 83–120 (2007)

    Article  MathSciNet  Google Scholar 

  11. Berger, N.,  Gantert, N.,  Peres, Y.: The speed of biased random walk on percolation clusters. Probab. Theory Relat. Fields 126, 221–242 (2003)

    Article  MathSciNet  Google Scholar 

  12. Croydon, D.,  Kumagai, T.: Random walks on Galton–Watson trees with infinite variance offspring distribution conditioned to survive. Electron. J. Probab. (2008, to appear). Preprint available at http://www.math.kyoto-u.ac.jp/~kumagai/kumpre.html

  13. Kesten, H.: The incipient infinite cluster in two-dimensional percolation. Probab. Theory Relat. Fields 73, 369–394 (1986)

    Article  MathSciNet  Google Scholar 

  14. Kesten, H.: Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22, 425–487 (1986)

    MathSciNet  Google Scholar 

  15. Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  16. Kozma, G., Nachmias, A.: The Alexander–Orbach conjecture holds in high dimensions. Preprint available at arXiv:0806.1442 (2008)

  17. Mathieu, P., Piatnitski, A.: Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. A 463, 2287–2307 (2007)

    Article  MathSciNet  Google Scholar 

  18. Misumi, J.: Estimates on the effective resistance in a long-range percolation on ℤd. J. Math. Kyoto Univ. 48, 389–400 (2008)

    Google Scholar 

  19. Sidoravicius, V., Sznitman, A.-S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129, 219–244 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kumagai.

Additional information

T. Kumagai research partially supported by the Grant-in-Aid for Scientific Research (B) 18340027.

J. Misumi research partially supported by the 21 century COE program at Graduate School of Mathematical Sciences, the University of Tokyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumagai, T., Misumi, J. Heat Kernel Estimates for Strongly Recurrent Random Walk on Random Media. J Theor Probab 21, 910–935 (2008). https://doi.org/10.1007/s10959-008-0183-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-008-0183-5

Keywords

Mathematics Subject Classification (2000)

Navigation