Skip to main content
Log in

Uniqueness of Embedding into a Gaussian Semigroup and a Poisson Semigroup with Determinate Jump Law on a Simply Connected Nilpotent Lie Group

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

An Erratum to this article was published on 03 October 2009

Abstract

Let {μ (i) t } t≥0 (i=1,2) be continuous convolution semigroups (c.c.s.) on a simply connected nilpotent Lie group G. Suppose that μ (1)1 =μ (2)1 . Assume furthermore that one of the following two conditions holds:

  1. (i)

    The c.c.s. {μ (1) t } t≥0 is a Gaussian semigroup (in the sense that its generating distribution just consists of a primitive distribution and a second-order differential operator)

  2. (ii)

    The c.c.s. {μ (i) t } t≥0 (i=1,2) are both Poisson semigroups, and the jump measure of {μ (1) t } t≥0 is determinate (i.e., it possesses all absolute moments, and there is no other nonnegative bounded measure with the same moments).

Then μ (1) t =μ (2) t for all t≥0. As a complement, we show how our approach can be directly used to give an independent proof of Pap’s result on the uniqueness of the embedding Gaussian semigroup on simply connected nilpotent Lie groups. In this sense, our proof for the uniqueness of the embedding semigroup among all c.c.s. of a Gaussian measure can be formulated self-contained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi, P.: Unicité du plongement d’une mesure de probabilité dans un semi-groupe de convolution Gaussien. Cas non-Abélien. Math. Z. 188, 411–417 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Böge, W.: Ueber die Charakterisierung unendlich teilbarer Wahrscheinlichkeitsverteilungen. J. Reine Angew. Math. 201, 150–156 (1959)

    MATH  MathSciNet  Google Scholar 

  3. Burrell, Q.L., McCrudden, M.: Infinitely divisible distributions on connected nilpotent Lie groups. J. London Math. Soc. (2) 7, 584–588 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. Franz, U., Neuenschwander, D., Schott, R.: Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups. Prob. Theory Rel. Fields 109, 101–127 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Variables. Addison–Wesley, Cambridge (1954)

    MATH  Google Scholar 

  6. Graczyk, P.: Cramér theorem on symmetric spaces of noncompact type. J. Theor. Probab. 7(3), 609–613 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hazod, W.: Ueber Wurzeln und Logarithmen beschränkter Masse. Z. Wahrscheinlichkeitstheorie verw. Geb. 20, 259–270 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hazod, W., Scheffler, H.P.: The domains of partial attraction of probabilities on groups and on vector spaces. J. Theor. Probab. 6(1), 175–186 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hazod, W., Siebert, E.: Stable Probability Measures on Euclidean Spaces and Locally Compact Groups. Structural Properties and Limit Theorems. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  10. Heyer, H.: Probability Measures on Locally Compact Groups. Springer, Berlin (1977)

    MATH  Google Scholar 

  11. Neuenschwander, D.: Probabilities on the Heisenberg Group: Limit Theorems and Brownian Motion. Lecture Notes in Mathematics, vol. 1630. Springer, Berlin (1996)

    MATH  Google Scholar 

  12. Neuenschwander, D.: On the uniqueness problem for continuous convolution semigroups of probability measures on simply connected nilpotent Lie groups. Publ. Math. Debrecen 53(3–4), 415–422 (1998)

    MATH  MathSciNet  Google Scholar 

  13. Neuenschwander, D.: s-stable semigroups on simply connected step 2-nilpotent Lie groups. In: Budzban, G., et al. (eds.) Probability on Algebraic Structures, AMS Special Session, Gainesville, FL, USA, March 12–13, 1999. AMS, Providence (2000). Contemp. Math. 261, 59–70

    Google Scholar 

  14. Neuenschwander, D.: Uniqueness of embedding of Gaussian probability measures into a continuous convolution semigroup on simply connected nilpotent Lie groups. C. R. Acad. Sci. Paris (2008, to appear)

  15. Neuenschwander, D.: Retrieval of Black–Scholes and generalized Erlang models by perturbed observations at a fixed time. Insur.: Math. Econ. 42/1, 453–458 (2008)

    Article  MathSciNet  Google Scholar 

  16. Nobel, S.: Limit theorems f–284 (1991)

  17. Pap, G.: Uniqueness of embedding into a Gaussian semigroup on a nilpotent Lie group. Arch. Math. (Basel) 62, 282–288 (1994)

    MATH  MathSciNet  Google Scholar 

  18. Schott, R.: Une loi du logarithme itéré pour certaines intégrales stochastiques. C. R. Acad. Sci. Paris Sér. I 292, 295–298 (1981)

    MATH  MathSciNet  Google Scholar 

  19. Serre, J.-P.: Lie Algebras and Lie Groups. Benjamin, New York (1965)

    MATH  Google Scholar 

  20. Siebert, E.: Ueber die Erzeugung von Faltungshalbgruppen auf beliebigen lokalkompakten Gruppen. Math. Z. 131, 313–333 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  21. Siebert, E.: Fourier analysis and limit theorems for convolution semigroups on a locally compact group. Adv. Math. 39, 111–154 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Neuenschwander.

Additional information

Dedicated to Professor Wilfried Hazod on the occasion of his 65th birthday.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10959-009-0243-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuenschwander, D. Uniqueness of Embedding into a Gaussian Semigroup and a Poisson Semigroup with Determinate Jump Law on a Simply Connected Nilpotent Lie Group. J Theor Probab 21, 791–801 (2008). https://doi.org/10.1007/s10959-008-0175-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-008-0175-5

Keywords

Mathematics Subject Classification (2000)

Navigation