Skip to main content
Log in

Stable Laws and Products of Positive Random Matrices

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let S be the multiplicative semigroup of q×q matrices with positive entries such that every row and every column contains a strictly positive element. Denote by (X n ) n≥1 a sequence of independent identically distributed random variables in S and by X (n)=X n ⋅⋅⋅ X 1,  n≥1, the associated left random walk on S. We assume that (X n ) n≥1 satisfies the contraction property

$$\mathbb {P}\biggl(\bigcup_{n\geq1}[X^{(n)}\in S{^{\circ}}]\biggr)>0,$$

where S° is the subset of all matrices which have strictly positive entries. We state conditions on the distribution of the random matrix X 1 which ensure that the logarithms of the entries, of the norm, and of the spectral radius of the products X (n), n≥1, are in the domain of attraction of a stable law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, J., Denker, M.: Characteristic functions of random variables attracted to 1-stable laws. Ann. Probab. 26(1), 399–415 (1988)

    MathSciNet  Google Scholar 

  2. Aaronson, J., Denker, M.: Local limit theorem for partial sums of stationary sequences generated by Gibbs-Markov maps. Stoch. Dyn. 1(2), 193–237 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aaronson, J., Denker, M.: A local limit theorem for stationary processes in the domain of attraction of a normal distribution. In: Balakrishnan, N., Ibragimov, I.A., Nevzorov, V.B. (eds.) Asymptotics Methods in Probability and Statistics with Applications. Birkhäuser, Boston (2001). Papers from the international conference, St. Petersburg, Russia, 1998, pp. 215–224

    Google Scholar 

  4. Babillot, M., Peigné, M.: Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps. Bull. Soc. Math. Fr. 134(1), 119–163 (2006)

    MATH  Google Scholar 

  5. Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Encyclopedia of Mathematics and Its Applications, vol. 64. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  6. Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Birkhäuser, Boston (1985)

    MATH  Google Scholar 

  7. Dunford, N., Schwartz, J.T.: Linear Operators. Part I: General Theory. Wiley, New York (1958)

    Google Scholar 

  8. Guivarc’h, Y., Le Jan, Y.: Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions. Ann. Sci. Ec. Norm. Super. 4(26), 23–50 (1993)

    MathSciNet  Google Scholar 

  9. Gouëzel, S.: Central limit theorem and stable laws for intermittent maps. Probab. Theory Relat. Fields 128, 82–122 (2004)

    Article  MATH  Google Scholar 

  10. Hennion, H.: Limit theorems for products of positive random matrices. Ann. Probab. 25(4), 1545–1587 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hennion, H., Hervé, L.: Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics, vol. 1766. Springer, New York (2001)

    MATH  Google Scholar 

  12. Hervé, L.: Théorème local pour chaînes de Markov de probabilité de transition quasi-compacte. Applications aux chaînes V-géométriquement ergodiques et aux modèles itératifs. Ann. Inst. Henri Poincaré PR 41, 179–196 (2005)

    Article  MATH  Google Scholar 

  13. Hervé, L.: Vitesse de convergence dans le théorème limite central pour des chaînes de Markov fortement ergodiques. Ann. Inst. Henri Poincaré (2008, to appear)

  14. Ibragimov, I.A., Linnik, Y.V.: Independent and Stationary Sequences of Random Variables. Wolter-Noordhoff, Groningen (1971)

    MATH  Google Scholar 

  15. Kesten, H., Spitzer, F.: Convergence in distribution of products of random matrices. Z. Wahrscheinlichkeitstheor. Verw. Geb. 67, 363–386 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mukherjea, A.: Convergence in distribution of products of random matrices : a semigroup approach. Trans. Am. Math. Soc. 303(1), 395–411 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nagaev, S.V.: Some limit theorems for stationary Markov chains. Theory Probab. Appl. 11(4), 378–406 (1957)

    Article  Google Scholar 

  18. Nagaev, S.V.: More exact statements of limit theorems for homogeneous Markov chains. Theory Probab. Appl. 6(1), 62–81 (1961)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hennion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennion, H., Hervé, L. Stable Laws and Products of Positive Random Matrices. J Theor Probab 21, 966–981 (2008). https://doi.org/10.1007/s10959-008-0153-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-008-0153-y

Keywords

Mathematics Subject Classification (2000)

Navigation