Skip to main content
Log in

Fragmentation Processes with an Initial Mass Converging to Infinity

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider a family of fragmentation processes where the rate at which a particle splits is proportional to a function of its mass. Let F (m)1 (t),F (m)2 (t),… denote the decreasing rearrangement of the masses present at time t in a such process, starting from an initial mass m. Let then m→∞. Under an assumption of regular variation type on the dynamics of the fragmentation, we prove that the sequence (F (m)2 ,F (m)3 ,…) converges in distribution, with respect to the Skorohod topology, to a fragmentation with immigration process. This holds jointly with the convergence of mF (m)1 to a stable subordinator. A continuum random tree counterpart of this result is also given: the continuum random tree describing the genealogy of a self-similar fragmentation satisfying the required assumption and starting from a mass converging to ∞ will converge to a tree with a spine coding a fragmentation with immigration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aldous, D.: The continuum random tree I. Ann. Probab. 19(1), 1–28 (1991)

    MATH  MathSciNet  Google Scholar 

  2. Aldous, D.: The continuum random tree III. Ann. Probab. 21, 248–289 (1993)

    MATH  MathSciNet  Google Scholar 

  3. Aldous, D., Pitman, J.: The standard additive coalescent. Ann. Probab. 26(4), 1703–1726 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berestycki, J.: Ranked fragmentations. ESAIM Probab. Stat. 6, 157–175 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Berestycki, J.: Fragmentations et coalescences homogènes. Thèse de doctorat de l’université Paris 6. Available via http://tel.ccsd.cnrs.fr/

  6. Bertoin, J.: Subordinators: examples and applications. In: Bernard, P. (ed.) Lectures on Probability Theory and Statistics, Ecole d’été de probabilités de St-Flour XXVII. Lecture Notes in Math., vol. 1717, pp. 1–91. Springer, Berlin (1999)

    Google Scholar 

  7. Bertoin, J.: Homogeneous fragmentation processes. Probab. Theory Relat. Fields 121(3), 301–318 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bertoin, J.: Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Stat. 38, 319–340 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bertoin, J.: The asymptotic behavior of fragmentation processes. J. Eur. Math. Soc. 5(4), 395–416 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  11. Duquesne, T.: Continuum random trees and branching processes with immigration. Stoch. Process. Appl. (to appear)

  12. Duquesne, T., Le Gall, J.F.: Random Trees, Lévy Processes and Spatial Branching Processes. Astérisque, vol. 281. Société Mathématique de France (2002)

  13. Etheridge, A.M., Williams, D.E.: A decomposition of the 1+β superprocess conditioned on survival. Proc. R. Soc. Edin. A 133, 829–847 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  15. Evans, S.N.: Two representations of a conditioned superprocess. Proc. R. Soc. Edin. A 123, 959–971 (1993)

    MATH  Google Scholar 

  16. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  17. Haas, B.: Loss of mass in deterministic and random fragmentations. Stoch. Process. Appl. 106(2), 245–277 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Haas, B.: Equilibrium for fragmentations with immigration. Ann. Appl. Probab. 15(3), 1958–1996 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Haas, B.: Fragmentations et perte de masse. Thèse de doctorat de l’université Paris 6. Available via http://tel.ccsd.cnrs.fr/

  20. Haas, B., Miermont, G.: The genealogy of self-similar fragmentations with a negative index as a continuum random tree. Electron. J. Probab. 9, 57–97 (2004)

    MathSciNet  Google Scholar 

  21. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  22. Kallenberg, O.: Random Measures. Akademie-Verlag, Berlin (1975)

    MATH  Google Scholar 

  23. Kingman, J.F.C.: Poisson Processes. Oxford Studies in Probability, vol. 3. Clarendon Press/Oxford University Press, New York (1993)

    MATH  Google Scholar 

  24. Lambert, A.: The genealogy of continuous-state branching processes with immigration. Probab. Theory Relat. Fields 122(1), 42–70 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of LLog L criteria for mean behavior of branching processes. Ann. Probab. 23(3), 1125–1138 (1995)

    MATH  MathSciNet  Google Scholar 

  26. Miermont, G.: Self-similar fragmentations derived from the stable tree I: splitting at heights. Probab. Theory Relat. Fields 127(3), 423–454 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Miermont, G.: Self-similar fragmentations derived from the stable tree II: splitting at nodes. Probab. Theory Relat. Fields 131(3), 341–375 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Miermont, G., Schweinsberg, J.: Self-similar fragmentations and stable subordinators. In: Séminaire de Probabilités XXXVII. Lectures Notes in Math., vol. 1832, pp. 333–359. Springer, Berlin (2003)

    Google Scholar 

  29. Neveu, J.: Processus ponctuels. In: Ecole d’été de probabilités de St-Flour VI. Lecture Notes in Math., vol. 598, pp. 249–445. Springer, Berlin (1977)

    Chapter  Google Scholar 

  30. Pitman, J.: Combinatorial stochastic processes. In: Ecole d’été de probabilités de St-Flour XXXII. Lecture Notes in Math., vol. 1875. Springer, Berlin (2006)

    Google Scholar 

  31. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bénédicte Haas.

Additional information

Research supported in part by EPSRC GR/T26368.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, B. Fragmentation Processes with an Initial Mass Converging to Infinity. J Theor Probab 20, 721–758 (2007). https://doi.org/10.1007/s10959-007-0120-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-007-0120-z

Keywords

Mathematics Subject Classification (2000)

Navigation