Skip to main content

Advertisement

Log in

Uniform Comparison of Tails of (Non-Symmetric) Probability Measures and Their Symmetrized Counterparts with Applications

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Let (\(\mathbb{B}\), \(\|\cdot\|\)) be a separable Banach space and let \(\mathcal{M}\) be a class of probability measures on \(\mathbb{B}\), and let \(\bar{\mu}\) denote the symmetrization of \(\mu\in\mathcal{M}\). We provide two sufficient conditions (one in terms of certain quantiles and the other in terms of certain moments of \(\|\cdot\|\) relative to μ and \(\bar{\mu}\), \(\mu\in\mathcal{M}\)) for the “uniform comparison” of the μ and \(\bar{\mu}\) measure of the complements of the closed balls of \(\mathbb{B}\) centered at zero, for every \(\mu\in\mathcal{M}\). As a corollary to these “tail comparison inequalities,” we show that three classical results (the Lévy-type Inequalities, the Kwapień-Contraction Inequality, and a part of the Itô–Nisio Theorem) that are valid for the symmetric (but not for the general non-symmetric) independent \(\mathbb{B}\)-valued random vectors do indeed hold for the independent random vectors whose laws belong to any \(\mathcal{M}\) which satisfies one of the two noted conditions and which is closed under convolution. We further point out that these three results (respectively, the tail comparison inequalities) are valid for the centered log-concave, as well as, for the strictly α-stable (or the more general strictly (r, α) -semistable) α ≠ 1 random vectors (respectively, probability measures). We also present several examples which we believe form a valuable part of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo A., Giné E. (1980). The CLT for Real and Banach Valued Random Variables. Wiley, New York NY

    Google Scholar 

  • Borell C. (1974). Convex measures on locally convex spaces. Ark. Mat. 12, 239–252

    Article  MATH  MathSciNet  Google Scholar 

  • Byczkowski T., Nolan J., Rajput B.S. (1993). Approximation of multidimensional stable densities. J. Mult. Anal. 46, 13–31

    Article  MATH  MathSciNet  Google Scholar 

  • Chung D.M., Rajput B.S., Tortrat A. (1982). Semi-stable laws on topological vector spaces. Z. Wahrscheinlicheeit. verwanticle. Geb. 60, 209–218

    Article  MATH  MathSciNet  Google Scholar 

  • de la Peña V.H., Giné E. (1998). Decoupling, From Dependence to Independence. Springer-Verlag, New York, NY

    MATH  Google Scholar 

  • Etemadi N. (1985). On some classical results in probability theory. Sankhyā, Ser. A 47, 209–214

    MATH  MathSciNet  Google Scholar 

  • Itô K., Nisio M. (1968). On the convergence of sums of independent Banach space valued random variables. Osaka J. Math. 5, 35–48

    MATH  MathSciNet  Google Scholar 

  • Kahane J.P. (1968). Some Random Series of Functions. Heath, Lexington, MA

    MATH  Google Scholar 

  • Kwapień S., Woyczynski W. (1992). Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston

    Google Scholar 

  • Lewandowski M., Ryznar M., Zak T. (1992). Stable measure of a small ball. Proc. Am. Math. Soc. 2, 489–494

    Article  MathSciNet  Google Scholar 

  • Linde W. (1986). Probability in Banach spaces. Wiley, New York, NY

    MATH  Google Scholar 

  • Milman V.D., and Schechtman J. (1989). Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics, Vol. 1200, Springer-Verlag, New York, NY.

  • Montgomery-Smith S. (1993). Comparison of sums of independent identically distributed random variables. Probab. Math. Stat. 14, 281–285

    MATH  MathSciNet  Google Scholar 

  • Rajput B.S. (1997). An estimate of the semistable measure of small balls in Banach spaces. In: Goldstein J. et al. (eds), Stochastic Processes and Functional Analysis. Marcél Decker Inc, New York NY, pp. 171–178

  • Rajput B.S., Rama-Murthy K. (1987). Spectral representations of semi-stable processes, and semi-stable laws on Banach spaces, J. Mult. Anal. 21, 141–159

    Google Scholar 

  • Rajput B.S., Rama-Murthy K. (2004). Comparison of tail probabilities of strictly semistable/stable random vectors and their symmetrized counterparts with application. Probab. Math. Stat. 24, 367–379

    MATH  MathSciNet  Google Scholar 

  • Rajput B.S., Rama-Murthy K., Retnam X.R. (1998). Moment comparison of multilinear forms in stable and semi-stable random variables with application to semistable multiple integrals. In: Karatzas I., Rajput B.S., Taqqu M.S., (eds), Stochastic Processes and Related Topics (In memory of Stamatis Cambanis). Birkhauser, Boston MA, pp. 339–355

  • Rajput B.S., Rosiński J. (1989). Spectral representations of infinitely divisible processes. Probab. Theory. Relat. Fields 82, 451–487

    MATH  Google Scholar 

  • Rosiński J. (1990). On series representation of infinitely divisible random vectors. Ann. Probab. 18, 405–430

    MathSciNet  Google Scholar 

  • Samorodnitsky G., Taqqu M. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall/CRC, New York, NY

    MATH  Google Scholar 

  • Sztencel R. (1981). On boundedness and convergence of some Banach valued random series. Probab. Math. Stat. 2, 83–88

    MATH  MathSciNet  Google Scholar 

  • Tortrat A. (1965). Lois de probabilité sur un espace topologique complèment règulier et produits infinis à terms indèpendants dan un groupe topologique. Ann. Inst. H.Poincaré 1, 217–237

    MathSciNet  Google Scholar 

  • Weron A., (1984). Stable Processes and Measures; A survey, Lecture Notes in Mathematics, Vol. 1080, Springer-Verlag, New York, NY, 306–364

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balram S. Rajput.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajput, B.S., Rama-Murthy, K. Uniform Comparison of Tails of (Non-Symmetric) Probability Measures and Their Symmetrized Counterparts with Applications. J Theor Probab 20, 87–105 (2007). https://doi.org/10.1007/s10959-006-0050-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0050-1

Keywords

Mathematics Subject Classification 1991

Navigation