Skip to main content
Log in

Almost Sure Relative Stability of the Overshoot of Power Law Boundaries

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

We give necessary and sufficient conditions for the almost sure relative stability of the overshoot of a random walk when it exits from a two-sided symmetric region with curved boundaries. The boundaries are of power-law type, ±rn b, r > 0, n = 1, 2,..., where 0 ≤ b < 1, b≠ 1/2. In these cases, the a.s. stability occurs if and only if the mean step length of the random walk is finite and non-zero, or the step length has a finite variance and mean zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bingham N.H., Goldie C.M., Teugels J.L. (1987) Regular Variation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Chow, Y. S., and Teicher, H. (1988). Probability Theory. Independence, Interchangeability, Martingales, 2nd ed. Springer Texts in Statistics, Springer-Verlag, New York, Berlin.

  3. Doney R.A., Griffin P.S. (2003) Overshoots over curved boundaries. Adv. Appl. Probab. 35: 417–448

    Article  MATH  MathSciNet  Google Scholar 

  4. Doney R.A., Griffin P.S. (2004) Overshoots over curved boundaries, II. Adv. Appl. Probab. 36: 1148–1174

    Article  MATH  MathSciNet  Google Scholar 

  5. Doney R.A., Maller R.A. (2000) Random walks crossing curved boundaries; stability and asymptotic distributions for exit times and positions. Adv. Appl. Probab. 32: 1117–1149

    Article  MATH  MathSciNet  Google Scholar 

  6. Griffin P.S., Maller R.A. (1998) On the rate of growth of the overshoot and the maximum partial sum. Adv. Appl. Probab. 30: 181–196

    Article  MATH  MathSciNet  Google Scholar 

  7. Griffin P.S., McConnell T.R. (1992) On the position of a random walk at the time of first exit from a sphere. Ann.Probab. 20: 825–854

    MATH  MathSciNet  Google Scholar 

  8. Griffin P.S., McConnell T.R. (1994) Gambler’s ruin and the first exit position of a random walk from large spheres. Ann. Probab. 22: 1429–1472

    MATH  MathSciNet  Google Scholar 

  9. Griffin P.S., McConnell T.R. (1995) L p-boundedness of the overshoot in multidimensional renewal theory. Ann. Probab. 23: 2022–2056

    MATH  MathSciNet  Google Scholar 

  10. Kesten H., Maller R.A. (1998) Random walks crossing power law boundaries. Studia Scientiarum Math. Hungarica 34: 219–252

    MATH  MathSciNet  Google Scholar 

  11. Kesten H., Maller R.A. (1998) Random walks crossing high level curved boundaries. J. Theor. Probab. 11: 1019–1074

    Article  MATH  MathSciNet  Google Scholar 

  12. Pruitt W.E. (1981) The growth of random walks and Lévy processes. Ann. Probab. 9: 948–956

    MATH  MathSciNet  Google Scholar 

  13. Spitzer F. (1976) Principles of Random Walk, 2nd ed. Springer-Verlag, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Maller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doney, R.A., Maller, R.A. Almost Sure Relative Stability of the Overshoot of Power Law Boundaries. J Theor Probab 20, 47–63 (2007). https://doi.org/10.1007/s10959-006-0040-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0040-3

Keywords

2000 MSC Subject Classifications

Navigation