Abstract
In this paper, we establish a multiplicative decomposition formula for nonnegative local martingales and use it to characterize the set of continuous local submartingales Y of the form Y = N + A, where the measure dA is carried by the set of zeros of Y. In particular, we shall see that in the set of all local submartingales with the same martingale part in the multiplicative decomposition, these submartingales are the smallest ones. We also study some integrability questions in the multiplicative decomposition and interpret the notion of saturated sets in the light of our results.
Similar content being viewed by others
References
Azéma J. (1972). Quelques applications de la théorie générale des processus I. Invent. Math. 18, 293–336
Azéma, J. (1978). Représentation d’une surmartingale bornée, ZW, 45, 191–212.
Azéma, J., Meyer, P.A., and Yor, M. (1992). Martingales relatives. Sém.Proba. XXVI, Lecture Notes in Mathematics Vol. 1526, Springer, pp.307–321.
Azéma, J., and Yor, M. (1992). Sur les zéros des martingales continues, Sém.Proba. XXVI, Lecture Notes in Mathematics Vol. 1526, Springer, pp.248–306.
Barlow, M.T., Emery, M., Knight, F.B., Song, S., and Yor, M. (1998). Autour d’un théorème de Tsirelson sur des filtrations browniennes et non browniennes, Sém.Proba. XXXII, Lecture Notes in Mathematics Vol. 1686, Springer, pp.264–305.
Dellacherie, C., Maisonneuve, B., and Meyer, P.A. (1992). Probabilités et Potentiel, Chapitres XVII-XXIV: Processus de Markov (fin), Compléments de Calcul Stochastique, Hermann Paris.
Itô K., Watanabe S. (1965). Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier. Grenoble. 15(1): 13–30
Jacod, J. (1979).Calcul stochastique et problèmes de martingales, Lecture Notes in Mathematics Vol. 714, Springer pp. 240–249.
Meyer, P.A. (1979). Représentations multiplicatives de sousmartingales d’après Azéma, Sém.Proba. XIII, Lecture Notes in Mathematics, Vol. 721, Springer.
Meyer, P.A. and Yoeurp, C. (1979). Sur la décomposition multiplicative des sousmartingaless positives, Sém.Proba. XIII, Lecture Notes in Mathematics, Vol. 721, Springer, pp.240–249.
Nikeghbali A., Yor M. (2006). Doob’s maximal identity, multiplicative decompositions and enlargements of filtrations. Illinois J Math. 50(4): 791–814
Nikeghbali A. (2006). A class of remarkable martingales, Stochastic Process. Appl. 116(6): 917–938
Nikeghbali A. (2006). Enlargements of filtrations and path decompositions at non stopping times. Probab. Theory and Relat. Fields 136, 532–540
Revuz D., Yor M. (1999). Continuous martingales and Brownian Motion, 3rd ed. Springer, Berlin
Yor M. (1979). Les inégalités de sous-martingales comme conséquence de la relation de domination. Stochastics 3,1–15
Yor M. (1997). Some Aspects of Brownian Motion, Part II. Some Recent Martingale Problems. Birkhauser, Basel
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nikeghbali, A. Multiplicative Decompositions and Frequency of Vanishing of Nonnegative Submartingales. J Theor Probab 19, 931–949 (2006). https://doi.org/10.1007/s10959-006-0035-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10959-006-0035-0