Skip to main content

Advertisement

Log in

Modified Logarithmic Sobolev Inequalities in Discrete Settings

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Motivated by the rate at which the entropy of an ergodic Markov chain relative to its stationary distribution decays to zero, we study modified versions of logarithmic Sobolev inequalities in the discrete setting of finite Markov chains and graphs. These inequalities turn out to be weaker than the standard log-Sobolev inequality, but stronger than the Poincare’ (spectral gap) inequality. We show that, in contrast with the spectral gap, for bounded degree expander graphs, various log-Sobolev constants go to zero with the size of the graph. We also derive a hypercontractivity formulation equivalent to our main modified log-Sobolev inequality. Along the way we survey various recent results that have been obtained in this topic by other researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon N., Milman V.D. (1985). λ1, isoperimetric inequalities for graphs and superconcentrators. J. Comb. Theory Ser. B 38, 73–88

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakry, D. (1994). L’hypercontractivité et son utilisation en théorie des semigroups. Ecole d’Été de Saint Flour, 1992. Lect. Notes in Math., Vol. 1581, Springer-Berlin.

  3. Bakry, D., and Emery, M. (1994). Diffusions hypercontractive. Séminaire de Probabilités XIX, Lect. Notes in Math., Vol. 1123, Springer, Berlin, pp. 179–206.

  4. Beckner W. (1989). A generalized Poincaré inequality for Gaussian measures. Proc. of the AMS, 105(2): 397–400

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobkov S.G., Götze F. (1999). Exponential integrability and transporation cost related to logarithmic transportation inequalities. J. Funct. Anal. 163, 1–28

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobkov S.G., Ledoux M. (1997). Poincaré inequalities and Talagrand’s measure concentration phenomenon for the exponential measure, Prob. Th. Relat. Fields 107, 383–400

    Article  MathSciNet  MATH  Google Scholar 

  7. Bobkov S.G., Ledoux M. (1998). On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 156, 347–365

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobkov, S. G., and Tetali, P. (June 2003). Modified log-Sobolev inequalities, mixing and hypercontractivity.Proc. of Symposium on Theory of computing, San Diego, pp. 287–296.

  9. Chen G.-Y., Shen Y.-C. (2003). On the log-Sobolev constant for the simple random walk on the n-cycle: the even cases. J. Funct. Anal. 202, 473–485

    Article  MathSciNet  MATH  Google Scholar 

  10. Chung F.R.K. (1989). Diameters and Eigenvalues. J. Amer. Math. Soc. 2, 187–196

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung F.R.K., Grigor’yan A., Yau S.-T. (2000). Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs. Comm. Anal. Geom. 8(5): 969–1026

    MathSciNet  MATH  Google Scholar 

  12. Cover T.M., Thomas J.A. (1991). Elements of Information Theory. John Wiley & Sons, New York

    MATH  Google Scholar 

  13. Dai Pra P., Paganoni A.M., Posta G. (2002). Entropy inequalities for unbounded spin systems. Ann. Probab. 30, 1959–1976

    Article  MathSciNet  MATH  Google Scholar 

  14. Diaconis P. (1988). Group representations in Probability and Statistics IMS. Hayward, CA

    Google Scholar 

  15. Diaconis P., Saloff-Coste L. (1996). Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6, 695–750

    Article  MathSciNet  MATH  Google Scholar 

  16. Diaconis P., Shahshahani M. (1981). Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete 57(2): 159–179

    Article  MathSciNet  MATH  Google Scholar 

  17. Diaconis P., Shahshahani M. (1987). Time to reach stationarity in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal. 18, 208–218

    Article  MathSciNet  MATH  Google Scholar 

  18. Durrett R. (1999). Essentials of Stochastic Processes. Springer Texts in Statistics. Springer-Verlag, New York Inc

    MATH  Google Scholar 

  19. Frieze, A., and Kannan, R. (1998). Log-Sobolev Inequalities and Sampling from Log-Concave Distributions. Preprint

  20. Gao F., Quastel J. (2003). Exponential decay of entropy in the Random Transposition and Bernoulli-Laplace models. Ann. Appl. Probab. 13, 1591–1600

    Article  MathSciNet  MATH  Google Scholar 

  21. Goel S. (2004). Modified logarithmic Sobolev inequalities for some models of random walk. Stoch. Proc. Their Appl. 114, 51–79

    Article  MathSciNet  MATH  Google Scholar 

  22. Gross L. (1975). Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1060–1083

    Article  Google Scholar 

  23. Higuchi, Y., and Yoshida, N. (1995). Analytic conditions and phase transition for Ising models. Lect. Notes in Japanese, 1995.

  24. Houdré C., Tetali P. (2001). Concentration of measure for products of Markov kernels and graph products via functional inequalities. Comb. Probab. Comp. 10, 1–28

    MATH  Google Scholar 

  25. Latala R., Oleszkiewicz K. (2000). Between Sobolev and Poincaré. Geometric Aspects Function. Analy. Lect. Notes Math. 1745, 147–168

    Article  MathSciNet  Google Scholar 

  26. Ledoux M. (1996). On Talagrand’s deviation inequalities for product measures. ESAIM Probab. Statist. 1, 63–87

    MathSciNet  MATH  Google Scholar 

  27. Ledoux M. (1999). Concentration of measure and logarithmic Sobolev inequalities and the phenomenon. Séminaire de Probabilitiés XXXIII, Lecture Notes Math., 1709, 120–216

    MathSciNet  Google Scholar 

  28. Ledoux, M. (2001). The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence RI

    Google Scholar 

  29. Lee T.Y., Yau H.T. (1998). Logarithmic Sobolev inequality for some models of random walks. Ann. Probab. 26(4): 1855–1873

    Article  MathSciNet  MATH  Google Scholar 

  30. Lieb E.H. (1975). Some convexity and subadditivity properties of entropy. Bull. Amer. Math. Soc. 81, 1–13

    Article  MathSciNet  MATH  Google Scholar 

  31. Miclo L. (1996). Sur les problémes de sortie discrets inhomogénes. Ann. Appl. Probab. 6(4): 1112–1156

    Article  MathSciNet  MATH  Google Scholar 

  32. Mohar B. (1991). Eigenvalues, diameter, and mean distance in graphs. Graphs Combin. 7, 53–64

    Article  MathSciNet  MATH  Google Scholar 

  33. Rothaus O. (1981). Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. J. Funct. Anal. 42, 102–109

    Article  MathSciNet  MATH  Google Scholar 

  34. Saloff-Coste, L. (1997). Lectures on finite Markov chains. Lect. Notes in Math. Vol. 1665, Springer, Berlin, pp. 301–413

  35. Sammer, M., and Tetali, P. (2004). Concentration and Transportation. Preprint (2004); conference version in SIAM Conf. on Discrete Math. (June 2004).

  36. Stark D. (2002). Information loss in top to random shuffling. Combin. Probab. & Comput. 11, 607–627

    Article  MathSciNet  MATH  Google Scholar 

  37. Stroock D. (1993). Logarithmic Sobolev inequalities for Gibbs measures. Lect. Notes in Math., Vol. 1563, Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Bobkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobkov, S.G., Tetali, P. Modified Logarithmic Sobolev Inequalities in Discrete Settings. J Theor Probab 19, 289–336 (2006). https://doi.org/10.1007/s10959-006-0016-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0016-3

Keywords

MSC 2000

Navigation