Skip to main content
Log in

Self-Normalized LIL for Hanson–Russo Type Increments

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let X 1, X 2,... be independent, but not necessarily identically distributed random variables in the domain of attraction of a normal law or a stable law with index 0 < α < 2. Using suitable self-normalizing (or Studentizing) factors, laws of the iterated logarithm for self-normalized Hanson–Russo type increments are discussed. Also, some analogous results for self-normalized weighted sums of i.i.d. random variables are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bentkus V., Bloznelis M., Götze F. (1996). A Berry–Esseen bound for student’s statistic in the non-i.i.d. case. J. Theoret. Probab. 9:765–796

    Article  MathSciNet  MATH  Google Scholar 

  2. Bingham N.H., Goldie C.M., and Teugels J.L. (1987). Regular Variation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Chow Y.S., and Teicher H. (1997). Probability Theory. Springer-Verlag, New York

    MATH  Google Scholar 

  4. Csörgő M., and Révész P. (1981). Strong Approximations in Probability and Statistics. Academic Press, New York

    Google Scholar 

  5. Griffin P., and Kuelbs J. (1989). Self-normalized laws of the iterated logarithm. Ann. Probab. 17:1571–1601

    Article  MathSciNet  MATH  Google Scholar 

  6. Hanson D.L., and Russo R.P. (1983). Some results on increments of the Wiener process with applications to lag sums of i.i.d. r.v.’s. Ann. Probab. 11:609–623

    Article  MathSciNet  MATH  Google Scholar 

  7. Hanson D.L., and Russo R.P. (1985). Some limit results for lag sums of independent, non-i.i.d., random variables. Z. Wahrsch. Verw. Gebiete 68:425–445

    Article  MathSciNet  MATH  Google Scholar 

  8. Jing B.Y., Shao Q.M., and Wang Q.Y. (2003). Self-normalized Cramér type large deviations for independent random variables. Ann. Probab. 31:2167–2215

    Article  MathSciNet  MATH  Google Scholar 

  9. Jing, B. Y., Liang, H. Y., and Zhou, W. (2003). Self-normalized moderate deviations for independent random variables. Manuscript submitted.

  10. Shao Q.M. (1997). Self-normalized large deviations. Ann. Probab. 25:285–328

    Article  MathSciNet  MATH  Google Scholar 

  11. Shao, Q. M. (1998). Recent developments on self-normalized limit theorems. Asymptotic Methods in Probability and Statistics (Ottawa, Canada, 1997), 467–480, North-Holland, Amsterdam.

  12. Shao Q.M. (1999). A Cramér type large deviation result for Student’s t-statistic. J. Theoret. Probab. 12:385–398

    Article  MathSciNet  MATH  Google Scholar 

  13. Strassen V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3:211–226

    Article  MathSciNet  MATH  Google Scholar 

  14. Strassen V. (1966). A converse to the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 4:265–268

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang Q.Y., and Jing B.Y. (1999). An exponential non-uniform Berry-Esseen bound for self-normalized sums. Ann. Probab. 27:2068–2088

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ying Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, HY., Steinebach, J.G. Self-Normalized LIL for Hanson–Russo Type Increments. J Theor Probab 19, 70–88 (2006). https://doi.org/10.1007/s10959-006-0011-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0011-8

Keywords

AMS 2000 Subject Classification

Navigation