Skip to main content
Log in

On Kelvin Transformation

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

We prove that in the Euclidean space of arbitrary dimension the inversion of the isotropic stable Lévy process killed at the origin is, after an appropriate change of time, the same stable process conditioned in the sense of Doob by the Riesz kernel. Using this identification we derive and explain transformation rules for the Kelvin transform acting on the Green function and the Poisson kernel of the stable process and on solutions of Schrödinger equation based on the fractional Laplacian. The Brownian motion and the classical Laplacian are included as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axler S., Bourdon P., Ramey W. (1992). Harmonic Function Theory. Springer-Verlag.

  2. Bañuelos R., Bogdan K. (2004). Symmetric stable processes in cones. Potential Anal. 21(3): 263–288

    Article  MathSciNet  MATH  Google Scholar 

  3. Berg, C., and Forst, G. (1975). Potential Theory on Locally Compact Abelian Groups. Springer-Verlag.

  4. Bertoin, J. (1996). Lévy processes. Cambridge University Press.

  5. Bliedtner, J., and Hansen, W. (1986). Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer-Verlag

  6. Blumenthal, R. M., and Getoor, R. K. (1968). Markov Processes and Potential Theory. Academic Press.

  7. Blumenthal R.M., Getoor R.K., Ray D.B. (1961). On the distribution of first hits for the symmetric stable processes. Trans. Amer. Math. Soc. 99, 540–554

    Article  MathSciNet  MATH  Google Scholar 

  8. Bochner, S. (1995). Harmonic Analysis and the Theory of Probability. University of California Press.

  9. Bogdan K. (1999). Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29(2): 227–243

    MathSciNet  MATH  Google Scholar 

  10. Bogdan, K. (2000). Kelvin transform and Riesz potentials. unpublished notes.

  11. Bogdan K., Burdzy K., Chen Z.-Q. (2003). Censored stable processes. Probab. Theory Related Fields 127, 89–152

    Article  MathSciNet  MATH  Google Scholar 

  12. Bogdan K., Byczkowski T. (1999). Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Math. 133(1): 53–92

    MathSciNet  MATH  Google Scholar 

  13. Bogdan K., Byczkowski T. (2000). Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Statist. 20(2): 293–335

    MathSciNet  MATH  Google Scholar 

  14. Bogdan K., Stós A., Sztonyk P. (2003). Harnack inequality for stable processes on d-sets. Studia Math. 158(2): 163–198

    MathSciNet  MATH  Google Scholar 

  15. Bogdan K., Sztonyk P. (2005). Harnack’s inequality for stable Lévy processes. Potential Anal. 22(2): 133–150

    Article  MathSciNet  MATH  Google Scholar 

  16. Brelot-Collin B., Brelot M. (1973). Allure á la frontiere des solutions positives de l’équation de Weinstein \(L_k(u) = \Delta u+\frac{k}{x_n}\frac{\partial u}{\partial x_n}=0\) dans le demi-espace E (x n > 0) de R n (n ≥ 2). Bull. Acad. Royale de Belg. 59, 1100–1117

    MathSciNet  Google Scholar 

  17. Chen Z.Q., Song R. (1998). Martin boundary and integral representation for harmonic functions of symmetric stable processes. J. Funct. Anal. 159, 267–294

    Article  MathSciNet  MATH  Google Scholar 

  18. Chung, K. L., and Zhao, Z. (1995). From Brownian motion to Schrödinger’s equation. Springer-Verlag.

  19. Clerc J.-L. (2000). Kelvin transform and multi-harmonic polynomials. Acta. Math. 185, 81–99

    Article  MathSciNet  MATH  Google Scholar 

  20. Courant R., Hilbert D. (1954). Methoden der Mathematischen Physik, I. Springer-Verlag.

  21. Doetsch, G. (1974). Introduction to the Theory and Application of the Laplace Transformation. Springer.

  22. Doob J.L. (1957). Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85, 431–458

    MathSciNet  MATH  Google Scholar 

  23. Durret R. (1984). Brownian Motion and Martingales in Analysis. Wadsworth, Belmont

    Google Scholar 

  24. Dziubański J. (1991). Asymptotic behaviour of densities of stable semigroups of measures. Probab. Theory Related Fields 87, 459–467

    Article  MathSciNet  MATH  Google Scholar 

  25. Folland, G. (1976). Introduction to Partial Differential Equations. Princeton University Press.

  26. Hunt G.A. (1956). Some theorems concerning Brownian motion. Trans. Amer. Math. Soc. 81, 294–319

    Article  MathSciNet  MATH  Google Scholar 

  27. Hunt G. A. (1957). Markov Processes and Potentials: I, II, III, Illinois J. Math. 1 44–93; 316–369, 2 (1958) 151–213.

  28. Jacob N. (2002). Pseudo-Differential Operators and Markov Processes, Generators and Their Potential Theory. Vol. II, Imperial College Press, London

    Google Scholar 

  29. Jakubowski T. (2003). The estimates for the Green function in Lipschitz domains for the symmetric stable processes. Probab. Math. Statist. 22(2): 419–441

    MathSciNet  Google Scholar 

  30. Kac M. (1957). Some remarks on stable processes. Publ. Inst. Statist. Univ. Paris 6, 303–306

    MathSciNet  MATH  Google Scholar 

  31. Landkof N.S. (1972). Foundations of Modern Potential Theory. Springer-Verlag.

  32. Ma, Z. -M., and Röckner, M. (1992). Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer-Verlag.

  33. Michalik K., Ryznar M. (2004). Relative Fatou theorem for α-harmonic functions in Lipschitz domains. Illinois J. Math. 48(3): 977–998

    MathSciNet  MATH  Google Scholar 

  34. Michalik K., Samotij K. (2000). Martin representation for α-harmonic functions. Probab. Math. Statist. 20(1): 75–91

    MathSciNet  MATH  Google Scholar 

  35. Port S.C. (1967). Hitting times and potentials for recurrent stable processes. J. Analyse Math. 20, 371–395

    Article  MathSciNet  MATH  Google Scholar 

  36. Ransford, T. (1995). Potential Theory in the Complex Plane. Cambridge University Press.

  37. Revuz D., Yor M. (1999). Continuous martingales and Brownian motion, 3rd ed., Springer, Berlin

    MATH  Google Scholar 

  38. Riesz M. (1938). Intégrales de Riemann-Liouville et potentiels. Acta Sci. Math. Szeged 9, 1–42

    MATH  Google Scholar 

  39. Riesz M. (1938). Rectification au travail “Intégrales de Riemann-Liouville et potentiels”. Acta Sci. Math. Szeged 9, 116–118

    Google Scholar 

  40. Rogers L., Williams, D. (1987). Diffusions, Markov Processes and Martingales Vol. 2: Itô calculus. John Wiley & Sons.

  41. Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press.

  42. Stein, E. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press.

  43. Williams, D. (1979). Diffusions, Markov Processes, and Martingales Vol. 1: Foundations. John Wiley & Sons.

  44. Yor M. (1985). À propos de l’inverse du mouvement brownien dans R n(n ≥ 3). Ann. Inst. H. Poincaré Probab. Statist. 21(1): 27–38

    MathSciNet  MATH  Google Scholar 

  45. Yosida, K. (1980). Functional Analysis. Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bogdan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdan, K., Żak, T. On Kelvin Transformation. J Theor Probab 19, 89–120 (2006). https://doi.org/10.1007/s10959-006-0003-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0003-8

Keywords

2000 MS Classification

Navigation