The Critical Value of the Contact Process with Added and Removed Edges

We show that the critical value for the contact process on a vertex-transitive graph \(\mathcal{G}\) with finitely many edges added and/or removed is the same as the critical value for the contact process on \(\mathcal{G}\). This gives a partial answer to a conjecture of Pemantle and Stacey.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Aizenman D. J. Barsky (1987) ArticleTitleSharpness of the phase transition in percolation models Comm. Math. Phys. 108 489–526 Occurrence Handle10.1007/BF01212322

    Article  Google Scholar 

  2. 2.

    E. D. Andjel M. D. Bramson T. M. Liggett (1988) ArticleTitleShocks in the asymmetric exclusion process Probab. Th. Rel. Fields 78 231–247 Occurrence Handle10.1007/BF00322020

    Article  Google Scholar 

  3. 3.

    C. Bezuidenhout G. Grimmett (1991) ArticleTitleExponential decay for subcritical contact and percolation processes Ann. Probab. 19 984–1009

    Google Scholar 

  4. 4.

    T. E. Harris (1974) ArticleTitleContact interactions on a lattice Ann. Probab. 2 969–988

    Google Scholar 

  5. 5.

    S. Handjani (1999) ArticleTitleSpatial perturbations of one-dimensional spin systems Stoch. Proc. Appl. 81 73–79 Occurrence Handle10.1016/S0304-4149(98)00105-7

    Article  Google Scholar 

  6. 6.

    Jung, P. H. (2004). Perturbations of the symmetric exclusion process, to appear in Markov Proc. Rel. Fields.

  7. 7.

    T. M. Liggett (1985) Interacting Particle Systems Springer-Verlag New York

    Google Scholar 

  8. 8.

    T. M. Liggett (1999) Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes Springer-Verlag Berlin Heidelberg

    Google Scholar 

  9. 9.

    N. Madras R. Schinazi R. H. Schonmann (1994) ArticleTitleOn the critical behavior of the contact process in deterministic inhomogeneous environments Ann. Probab. 22 1140–1159

    Google Scholar 

  10. 10.

    M.V. Menshikov (1986) ArticleTitleCoincidence of the critical points in percolation problems Soviet Math. Dokl. 33 856–859

    Google Scholar 

  11. 11.

    R. Pemantle A.M. Stacey (2001) ArticleTitleThe branching random walk and contact process on non-homogeneous and Galton-Watson trees Ann. Probab. 29 1563–1590 Occurrence Handle10.1214/aop/1015345762

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Jung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung, P. The Critical Value of the Contact Process with Added and Removed Edges. J Theor Probab 18, 949–955 (2005). https://doi.org/10.1007/s10959-005-7536-0

Download citation

Key words

  • Interacting particle system
  • contact process
  • phase transition
  • infinitesimal coupling