Abstract
We consider nondiagonal elliptic and parabolic systems of equations with strongly nonlinear terms in the gradient. We review and comment known solvability and regularity results and describe the our last results in this field.
Similar content being viewed by others
References
A. A. Arkhipova, “Global solvability of the Cauchy–Dirichlet problem for nondiagonal parabolic systems with variational structure in the case of two spatial variables,” J. Math. Sci. (N.Y.), 92, No. 6, 4231–4255 (1998).
A. A. Arkhipova, “Local and global solvability of the Cauchy–Dirichlet problem for a class of nonlinear nondiagonal parabolic systems,” St. Petersburg Math. J., 11, No 6, 989–1017 (2000).
A. A. Arkhipova, “Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems,” Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14, No. 2, 91–108 (2003).
A. A. Arkhipova, “Quasireverse Hölder inequalities and their applications,” In: Nonlinear Equations and Spectral Theory. Dedicated to the Memory of Olga Aleksandrovna Ladyzhenskaya, Am. Math. Soc., Providence, pp. 1–25 (2007).
A. A. Arkhipova, “Heat flow for one class of quadratic functionals with a nondiagonal principal matrix. Existence of a smooth global solution,” St. Petersburg Math. J., 30, No. 2, 181–202 (2019).
A. A. Arkhipova, “Weak global solvability of two-phase problem for a class of parabolic systems with strong nonlinearity in the gradient. The case of two spatial variables,” St. Petersburg Math. J., 31, No 2, 118–151 (2020).
A. A. Arkhipova, “Global solvability of the Cauchy–Dirichlet problem for a class of strongly nonlinear parabolic systems,” J. Math. Sci. (N.Y.), 250, No 2, 201–231 (2020).
A. A. Arkhipova, “Local regularity of weak solutions to quasilinear elliptic systems with one-side condition on quadratic nonlinearity in the gradient,” J. Math. Sci. (N.Y.), 255, No. 4, 388–408 (2021).
A. A. Arkhipova, “Regularity conditions for nonlinear elliptic systems with quadratic nonlinearities in the gradient,” J. Math. Sci. (N.Y.), 259, No. 2, 128–147 (2021).
A. A. Arkhipova, “Parabolic systems with quadratic nonlinearities in the gradient. Regularity of solutions,” J. Math. Sci. (N.Y.), 264, No. 5, 525–551 (2022).
A. A. Arkhipova, “Local regularity of weak solutions to a class of parablic systems with quadratic nonlinearities in the gradient”, Manuscripta Math., 170, No. 3-4, 497–529 (2023).
A. A. Arkhipova and J. Stará, “Boundary partial regularity for solutions of quasilinear parabolic systems with non smooth in time principal matrices,” Nonlinear Anal., 120, 236–261 (2015).
A. A. Arkhipova and J. Stará, “Regularity problem for 2m-order quasilinear parabolic systems with non smooth in time principal matrix. (A(t),m)-caloric approximation method,” Topol. Methods Nonlinear Anal., 52, No. 1, 111–146 (2018).
A. A. Arkhipova and J. Stará, “Regularity problem for one class of nonlinear parabolic systems with nonsmooth in time principal matrix,” Comment. Math. Univ. Carolin., 60, No. 2, 231–267 (2019).
A. A. Arkhipova, J. Stará, and O. John, “Partial regularity for solutions of quasilinear parabolic systems with nonsmooth in time,” Nonlinear Anal., 95, 421–435 (2014).
E. De Giorgi, “Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari,” Mem. Accad. Sci. Torino cl. Sci. Fis. Mat. Nat., 3, (3), 25–43 (1957).
E. De Giorgi, “Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,” Boll. Unione Mat. Ital., 4, 135–137 (1968).
F. Duzaar and J. F. Grotowski, “Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation,” Manuscripta Math., 103, 267–298 (2000).
F. Duzaar and G. Mingione, “Second order parabolic systems, optimal regularity, and singular sets of solutions,” Ann Inst. H. Poincaré, Anal. Non Linéaire, 22, 705–751 (2005).
F. Duzaar and K. Steffen, “Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals,” J. Reine Angew. Math., 546, 76–138 (2002).
J. Frehse, “A note on the Hölder continuity of the variational problems,” Abh. Math. Semin. Univ. Hambg., 43, 59–63 (1975).
J. Frehse, “On two-dimensional quasilinear elliptic systems,” Manuscripta Math., 28, 21–49 (1979).
F. W. Gehring, “The Lp-integrability of the partial derivatives of a quasi conformal mapping,” Acta Math., 130, 265–277 (1973).
M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton (1983).
M. Giaquinta and E. Giusti, “On the regularity of the minima of variational integrals,” Acta Math., 148, 31–46 (1982).
M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Edizioni della Normale, Pisa (2012).
M. Giaquinta and G. Modica, “Regolarity results for some classes of higher order non linear elliptic systems,” J. Reine Angew. Math., 311-312, 145–169 (1979).
M. Giaquinta and M. Struwe, “On the partial regularity of weal solutions of nonlinear parabolic problems,” Math. Z., 179, 437–451 (1982).
E. Giusti, “Precisazione delle funzioni H1,p e singolarità delle soluzioni deboli di sistemi ellittici non lineari,” Boll. Unione Mat. Ital., 2, 71–76 (1969).
E. Giusti and M. Miranda, “Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasilineari,” Arch. Ration. Mech. Anal., 31, 173–184 (1968).
C. Hamburger, “A new partial regularity proof for solutions of nonlinear elliptic systems,” Manuscripta Math., 95, No. 1, 11–31 (1998).
S. Hildebrandt and K.-O. Widman, “Some regularity results for quasilinear elliptic systems of second order,” Math. Z., 142, 67–86 (1975).
P.-A. Ivert, “On quasilinear elliptic systems of diagonal form,” Math. Z., 170, 283–286 (1980).
O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Am. Math. Soc., Providence (1968).
O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968).
M. Marino and A. Maugeri, “Partial Hölder continuity of solutions of nonlinear parabolic systems of second order with quadratic growth,” Boll. Unione Mat. Ital., 3-B, 397–435 (1989).
M. Marino and A. Maugeri, “A remark on the note: Partial Hölder continuity of the spatial derivatives of the solutions to nonlinear parabolic systems with quadratic growth,” Rend. Semin. Mat. Univ. Padova, 95, 23–28 (1996).
C. Mooney, “Finite time blowup for parabolic systems in two dimensions,” Arxiv, 1604.05616v1 [math.AP] (2016).
C. B. Morrey, “Partial regularity results for nonlinear elliptic systems,” J. Math. Mech., 17, 649–670 (1968).
J. Nash, “Continuity of solutions of parabolic and elliptic equations,” Ann. J. Math., 80, 931–954 (1958).
L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Birkhäuzer, Basel (1996).
M. Specovius-Neigebauer and J. Frehse, “Existence of regular solutions to a class of parabolic systems in two space dimensions with critical growth behaviour,” Ann. Univ. Ferrara Sez. VII Sci. Mat., 55, No. 2, 239–261 (2009).
M. Specovius-Neigebauer and J. Frehse, “Morrey estimates and Hölder continuity for solutions to parabolic equations with entropy inequalities,” J. Reine Angew. Math., 638, 169–188 (2010).
J. Starà and O. John, “Some (new) counterexamples of parabolic systems,” Comment. Math. Univ. Carolin., 36, 503–510 (1995).
J. Starà and O. John, “On some regularity and non regularity results for solutions to parabolic systems,” Matematiche, 55, Suppl. 2, 145–163 (2000).
J. Stará, O. John, and J. Malý, “Counterexample to the regularity of weak solution of the quasilinear elliptic system,” Comment. Math. Univ. Carolin., 27, 123–136 (1986).
E. W. Stredulinsky, “Higher integrability from reverse Hölder inequalities,” Indiana Univ. Math. J., 29, No. 3, 408–417 (1980).
M. Struwe, “A counterexample in elliptic regularity theory,” Manuscripta Math., 34, 85–92 (1981).
V. Sverák and X. Yan, “Non Lipschitz minimizers of smooth uniformly convex variational integrals,” Proc. Natl. Acad. Sci. USA, 99, No. 24, 15268–15276 (2002).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 69, No. 1, Differential and Functional Differential Equations, 2023.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Arkhipova, A.A. Quasilinear Elliptic and Parabolic Systems with Nondiagonal Principal Matrices and Strong Nonlinearities in the Gradient. Solvability and Regularity Problems. J Math Sci 283, 183–194 (2024). https://doi.org/10.1007/s10958-024-07248-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-024-07248-0