Skip to main content
Log in

Quasilinear Elliptic and Parabolic Systems with Nondiagonal Principal Matrices and Strong Nonlinearities in the Gradient. Solvability and Regularity Problems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider nondiagonal elliptic and parabolic systems of equations with strongly nonlinear terms in the gradient. We review and comment known solvability and regularity results and describe the our last results in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Arkhipova, “Global solvability of the Cauchy–Dirichlet problem for nondiagonal parabolic systems with variational structure in the case of two spatial variables,” J. Math. Sci. (N.Y.), 92, No. 6, 4231–4255 (1998).

  2. A. A. Arkhipova, “Local and global solvability of the Cauchy–Dirichlet problem for a class of nonlinear nondiagonal parabolic systems,” St. Petersburg Math. J., 11, No 6, 989–1017 (2000).

    MathSciNet  Google Scholar 

  3. A. A. Arkhipova, “Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems,” Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14, No. 2, 91–108 (2003).

  4. A. A. Arkhipova, “Quasireverse Hölder inequalities and their applications,” In: Nonlinear Equations and Spectral Theory. Dedicated to the Memory of Olga Aleksandrovna Ladyzhenskaya, Am. Math. Soc., Providence, pp. 1–25 (2007).

  5. A. A. Arkhipova, “Heat flow for one class of quadratic functionals with a nondiagonal principal matrix. Existence of a smooth global solution,” St. Petersburg Math. J., 30, No. 2, 181–202 (2019).

    Article  MathSciNet  Google Scholar 

  6. A. A. Arkhipova, “Weak global solvability of two-phase problem for a class of parabolic systems with strong nonlinearity in the gradient. The case of two spatial variables,” St. Petersburg Math. J., 31, No 2, 118–151 (2020).

    Article  MathSciNet  Google Scholar 

  7. A. A. Arkhipova, “Global solvability of the Cauchy–Dirichlet problem for a class of strongly nonlinear parabolic systems,” J. Math. Sci. (N.Y.), 250, No 2, 201–231 (2020).

  8. A. A. Arkhipova, “Local regularity of weak solutions to quasilinear elliptic systems with one-side condition on quadratic nonlinearity in the gradient,” J. Math. Sci. (N.Y.), 255, No. 4, 388–408 (2021).

  9. A. A. Arkhipova, “Regularity conditions for nonlinear elliptic systems with quadratic nonlinearities in the gradient,” J. Math. Sci. (N.Y.), 259, No. 2, 128–147 (2021).

  10. A. A. Arkhipova, “Parabolic systems with quadratic nonlinearities in the gradient. Regularity of solutions,” J. Math. Sci. (N.Y.), 264, No. 5, 525–551 (2022).

  11. A. A. Arkhipova, “Local regularity of weak solutions to a class of parablic systems with quadratic nonlinearities in the gradient”, Manuscripta Math., 170, No. 3-4, 497–529 (2023).

    Article  MathSciNet  Google Scholar 

  12. A. A. Arkhipova and J. Stará, “Boundary partial regularity for solutions of quasilinear parabolic systems with non smooth in time principal matrices,” Nonlinear Anal., 120, 236–261 (2015).

    Article  MathSciNet  Google Scholar 

  13. A. A. Arkhipova and J. Stará, “Regularity problem for 2m-order quasilinear parabolic systems with non smooth in time principal matrix. (A(t),m)-caloric approximation method,” Topol. Methods Nonlinear Anal., 52, No. 1, 111–146 (2018).

    MathSciNet  Google Scholar 

  14. A. A. Arkhipova and J. Stará, “Regularity problem for one class of nonlinear parabolic systems with nonsmooth in time principal matrix,” Comment. Math. Univ. Carolin., 60, No. 2, 231–267 (2019).

    MathSciNet  Google Scholar 

  15. A. A. Arkhipova, J. Stará, and O. John, “Partial regularity for solutions of quasilinear parabolic systems with nonsmooth in time,” Nonlinear Anal., 95, 421–435 (2014).

    Article  MathSciNet  Google Scholar 

  16. E. De Giorgi, “Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari,” Mem. Accad. Sci. Torino cl. Sci. Fis. Mat. Nat., 3, (3), 25–43 (1957).

  17. E. De Giorgi, “Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,” Boll. Unione Mat. Ital., 4, 135–137 (1968).

    MathSciNet  Google Scholar 

  18. F. Duzaar and J. F. Grotowski, “Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation,” Manuscripta Math., 103, 267–298 (2000).

    Article  MathSciNet  Google Scholar 

  19. F. Duzaar and G. Mingione, “Second order parabolic systems, optimal regularity, and singular sets of solutions,” Ann Inst. H. Poincaré, Anal. Non Linéaire, 22, 705–751 (2005).

  20. F. Duzaar and K. Steffen, “Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals,” J. Reine Angew. Math., 546, 76–138 (2002).

    MathSciNet  Google Scholar 

  21. J. Frehse, “A note on the Hölder continuity of the variational problems,” Abh. Math. Semin. Univ. Hambg., 43, 59–63 (1975).

    Article  Google Scholar 

  22. J. Frehse, “On two-dimensional quasilinear elliptic systems,” Manuscripta Math., 28, 21–49 (1979).

    Article  MathSciNet  Google Scholar 

  23. F. W. Gehring, “The Lp-integrability of the partial derivatives of a quasi conformal mapping,” Acta Math., 130, 265–277 (1973).

    Article  MathSciNet  Google Scholar 

  24. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton (1983).

    Google Scholar 

  25. M. Giaquinta and E. Giusti, “On the regularity of the minima of variational integrals,” Acta Math., 148, 31–46 (1982).

    Article  MathSciNet  Google Scholar 

  26. M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Edizioni della Normale, Pisa (2012).

  27. M. Giaquinta and G. Modica, “Regolarity results for some classes of higher order non linear elliptic systems,” J. Reine Angew. Math., 311-312, 145–169 (1979).

    Google Scholar 

  28. M. Giaquinta and M. Struwe, “On the partial regularity of weal solutions of nonlinear parabolic problems,” Math. Z., 179, 437–451 (1982).

    Article  MathSciNet  Google Scholar 

  29. E. Giusti, “Precisazione delle funzioni H1,p e singolarità delle soluzioni deboli di sistemi ellittici non lineari,” Boll. Unione Mat. Ital., 2, 71–76 (1969).

    Google Scholar 

  30. E. Giusti and M. Miranda, “Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasilineari,” Arch. Ration. Mech. Anal., 31, 173–184 (1968).

    Article  Google Scholar 

  31. C. Hamburger, “A new partial regularity proof for solutions of nonlinear elliptic systems,” Manuscripta Math., 95, No. 1, 11–31 (1998).

    Article  MathSciNet  Google Scholar 

  32. S. Hildebrandt and K.-O. Widman, “Some regularity results for quasilinear elliptic systems of second order,” Math. Z., 142, 67–86 (1975).

    Article  MathSciNet  Google Scholar 

  33. P.-A. Ivert, “On quasilinear elliptic systems of diagonal form,” Math. Z., 170, 283–286 (1980).

    Article  MathSciNet  Google Scholar 

  34. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Am. Math. Soc., Providence (1968).

  35. O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968).

    Google Scholar 

  36. M. Marino and A. Maugeri, “Partial Hölder continuity of solutions of nonlinear parabolic systems of second order with quadratic growth,” Boll. Unione Mat. Ital., 3-B, 397–435 (1989).

  37. M. Marino and A. Maugeri, “A remark on the note: Partial Hölder continuity of the spatial derivatives of the solutions to nonlinear parabolic systems with quadratic growth,” Rend. Semin. Mat. Univ. Padova, 95, 23–28 (1996).

    Google Scholar 

  38. C. Mooney, “Finite time blowup for parabolic systems in two dimensions,” Arxiv, 1604.05616v1 [math.AP] (2016).

  39. C. B. Morrey, “Partial regularity results for nonlinear elliptic systems,” J. Math. Mech., 17, 649–670 (1968).

    Google Scholar 

  40. J. Nash, “Continuity of solutions of parabolic and elliptic equations,” Ann. J. Math., 80, 931–954 (1958).

    MathSciNet  Google Scholar 

  41. L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Birkhäuzer, Basel (1996).

  42. M. Specovius-Neigebauer and J. Frehse, “Existence of regular solutions to a class of parabolic systems in two space dimensions with critical growth behaviour,” Ann. Univ. Ferrara Sez. VII Sci. Mat., 55, No. 2, 239–261 (2009).

    Article  MathSciNet  Google Scholar 

  43. M. Specovius-Neigebauer and J. Frehse, “Morrey estimates and Hölder continuity for solutions to parabolic equations with entropy inequalities,” J. Reine Angew. Math., 638, 169–188 (2010).

    MathSciNet  Google Scholar 

  44. J. Starà and O. John, “Some (new) counterexamples of parabolic systems,” Comment. Math. Univ. Carolin., 36, 503–510 (1995).

    MathSciNet  Google Scholar 

  45. J. Starà and O. John, “On some regularity and non regularity results for solutions to parabolic systems,” Matematiche, 55, Suppl. 2, 145–163 (2000).

    MathSciNet  Google Scholar 

  46. J. Stará, O. John, and J. Malý, “Counterexample to the regularity of weak solution of the quasilinear elliptic system,” Comment. Math. Univ. Carolin., 27, 123–136 (1986).

    MathSciNet  Google Scholar 

  47. E. W. Stredulinsky, “Higher integrability from reverse Hölder inequalities,” Indiana Univ. Math. J., 29, No. 3, 408–417 (1980).

    Article  Google Scholar 

  48. M. Struwe, “A counterexample in elliptic regularity theory,” Manuscripta Math., 34, 85–92 (1981).

    Article  MathSciNet  Google Scholar 

  49. V. Sverák and X. Yan, “Non Lipschitz minimizers of smooth uniformly convex variational integrals,” Proc. Natl. Acad. Sci. USA, 99, No. 24, 15268–15276 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Arkhipova.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 69, No. 1, Differential and Functional Differential Equations, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipova, A.A. Quasilinear Elliptic and Parabolic Systems with Nondiagonal Principal Matrices and Strong Nonlinearities in the Gradient. Solvability and Regularity Problems. J Math Sci 283, 183–194 (2024). https://doi.org/10.1007/s10958-024-07248-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-07248-0

Keywords

Navigation