Skip to main content
Log in

Eigenvalues of the Neumann Laplacian with Density and Sharp Sobolev–Orlicz Embeddings

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We provide estimates for the constant in the weighted Sobolev–Poincaré inequality for a special class of planar domains and weights. We obtain lower bounds for the first nonzero eigenvalue μρ of the Neumann Laplacian with density ρ. These estimates depend on the density function and geometry of the domain. We show that μρ can be made arbitrarily large by changing the mass density of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser Verlag, Basel (2006).

  2. B. Colbois, A. El Soufi, and A. Savo, “Eigenvalues of the Laplacian on a compact manifold with density,” Commun. Anal. Geom. 23, No. 3, 639–670 (2015).

    Article  MathSciNet  Google Scholar 

  3. B. Colbois and A. El Soufi, “Spectrum of the Laplacian with weights,” Ann. Global Anal. Geom. 55, No. 2, 149–180 (2019).

    Article  MathSciNet  Google Scholar 

  4. I. Chlebicka, “A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 175, 1–27 (2018).

  5. V. Gol’dshtein and L. Gurov, “Applications of change of variables operators for exact embedding theorems,” Integral Equations Oper. Theory 19, No. 1, 1–24 (1994).

  6. V. Gol’dshtein and A. Ukhlov, “Weighted Sobolev spaces and embedding theorems,” Trans. Am. Math. Soc. 361, No. 7, 3829–3850 (2009).

  7. V. Gol’dshtein and A. Ukhlov, “On the first eigenvalues of free vibrating membranes in conformal regular domains,” Arch. Ration. Mech. Anal. 221, No. 2, 893–915 (2016).

  8. V. Gol’dshtein and A. Ukhlov, “Spectral estimates of the p-Laplace Neumann operator in conformal regular domains,” Trans. A. Razmadze Math. Inst. 170, No. 1, 137–148 (2016).

  9. M. A. Krasnoselskij and J. B. Rutickij, Convex Functions and Orlicz Spaces, Noordhoff, Groningen (1961).

    Google Scholar 

  10. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York etc. (1991).

    Google Scholar 

  11. V. Maz’ya, Sobolev Spaces: with Applications to Elliptic Partial Differential Equations, Springer, Berlin etc. (2010).

  12. V. G. Maz’ya and V. P. Khavin. “Non-linear potential theory,” Russ. Math. Surv. 27, No. 1, 71–148 (1972).

  13. P. Hajłasz and P. Koskela, “Sobolev met Poincaré” Mem. Am. Math. Soc. 688 (2000).

  14. V. I. Burenkov, V. Gol’dshtein, and A. Ukhlov, “Conformal spectral stability estimates for the Dirichlet Laplacian,” Math. Nachr. 288, No. 16, 1822–1833 (2015).

  15. V. Gol’dshtein, V. Pchelintsev, and A. Ukhlov, “Integral estimates of conformal derivatives and spectral properties of the Neumann-Laplacian,” J. Math. Anal. Appl. 463, No. 1, 19–39 (2018).

  16. L. Ahlfors, Lectures on Quasiconformal Mappings, Princeton, N.J.-Toronto-New York- London: D. Van Nostrand Company, New York etc. (1966).

  17. A. Ukhlov, “On mappings generating the embeddings of Sobolev spaces,” Sib. Math. J. 34, No. 1, 165–171 (1993).

    Article  Google Scholar 

  18. S. K. Vodop’yanov and A. D. Ukhlov, “Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups,” Sib. Math. J. 39, No. 4, 665–682 (1998).

  19. V. Gol’dshtein and A. Ukhlov, “Brennan’s conjecture for composition operators on Sobolev spaces,” Eurasian Math. J. 3, No. 4, 35–43 (2012).

  20. S. K. Vodop’yanov and A. D. Ukhlov, “Superposition operators in Sobolev spaces,” Russ. Math. 46, No. 10, 9–31 (2002)

  21. N. S. Trudinger, “On imbeddings into Orlicz spaces and some applications,” J. Math. Mech. 17, 473–483 (1967).

    MathSciNet  Google Scholar 

  22. V. I. Judovich, “Some estimates connected with integral operators and with solutions of elliptic equations,” Sov. Math., Dokl. 2, 746–749 (1961).

  23. A. Cianchi and V. G. Maz’ya, “Sobolev embeddings into Orlicz spaces and isocapacitary inequalities,” Trans. Am. Math. Soc. 376, No. 1, 91–121 (2023).

  24. S. Hencl and P. Koskela, Lectures on Mappings of Finite Distortion, Springer, Cham (2014).

    Book  Google Scholar 

  25. K. Astala, J. T. Gill, S. Rhode, and E. Saksman, “Optimal regularity for planar mappings of finite distortion,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 1, 1–19 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Menovschikov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menovschikov, A. Eigenvalues of the Neumann Laplacian with Density and Sharp Sobolev–Orlicz Embeddings. J Math Sci 281, 782–804 (2024). https://doi.org/10.1007/s10958-024-07147-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-07147-4

Navigation