Skip to main content
Log in

Weierstrass Polynomials in Estimates of Oscillatory Integrals

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, estimates are obtained for the Fourier transform of smooth charges (measures) concentrated on some nonconvex hypersurfaces. The summability of the maximal Randall function is proved for a wide class of nonconvex hypersurfaces. In addition, in the three-dimensional case, estimates are obtained depending on the Varchenko height. The accuracy of the obtained estimates is proved. The proof of the estimate for oscillatory integrals is based on the Weierstrass preparatory theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “Trigonometric integrals,” Izv. AN SSSR, 43, No. 5, 971–1003 (1979).

    MathSciNet  Google Scholar 

  2. V. I. Arnol’d, A. N. Varchenko, and S. M. Guseyn-zade, Singularities of Differentiable Mappings, V. 1. Classification of Critical Points of Caustics and Wave Fronts [in Russian], Nauka, Moscow (1982).

  3. J.-G. Bak, D. Oberlin, and A. Seeger, “Restriction of Fourier transform to curves: An endpoint estimate with affine arclength measure,” ArXiv, 1109.1300v2 [math.CA] (2012).

  4. M. Chakhkiev, “Estimates for oscillating integrals with convex phase and their applications,” Abstract of Doctoral Thesis, MSU, Moscow, 2006.

  5. J. Duistermaat, “Oscillatory integrals, Lagrange immersions and unifoldings of singularities,” Commun. Pure Appl. Math., 27, No. 2, 207–281 (1974).

    Article  Google Scholar 

  6. L’. Erdös and M. Salmhofer, “Decay of the Fourier transform of surfaces with vanishing curvature,” Math. Z., 257, No. 2, 261–294 (2007).

  7. H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II,” Ann. Math., 79, 109–326 (1964).

    Article  MathSciNet  Google Scholar 

  8. L.-K. Hua, “On the number of solutions of Tarry’s problem,” Acta Sci. Sinica, 1, No. 1, 1–76 (1952).

    MathSciNet  Google Scholar 

  9. I. A. Ikromov, “On estimates of the Fourier transform of the indicator of nonconvex sets,” Dokl. RAN, 331, No. 3, 272–274 (1993).

    MathSciNet  Google Scholar 

  10. I. A. Ikromov, “On estimates of the Fourier transform of the indicator of nonconvex domains,” Funkts. Analiz i Ego Prilozh., 29, No. 3, 16–24 (1995).

    MathSciNet  Google Scholar 

  11. I. A. Ikromov, “Damped oscillatory integrals and maximum operators,” Mat. Zametki, 78, No. 6, 833–852 (2005).

    Google Scholar 

  12. I. A. Ikromov, “Summability of oscillatory integrals with respect to parameters and the problem of restricting the Fourier transform on curves,” Mat. Zametki, 87, No. 5, 734–755 (2010).

    MathSciNet  Google Scholar 

  13. I. A. Ikromov, M. Kempe, and D. Müller, “Estimates for maximal functions associated with hypersurfaces in ℝ3 and related problems of harmonic analysis,” Acta Math., 204, No. 2, 151–271 (2010).

    Article  MathSciNet  Google Scholar 

  14. I. A. Ikromov and D. Müller, “Uniform estimates for the Fourier transform of surface carried measures in ℝ3 and an application to Fourier restriction,” J. Fourier Anal. Appl., 17, No. 6, 1292–1332 (2011).

    Article  MathSciNet  Google Scholar 

  15. I. A. Ikromov and D. Müller, Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra, Princeton University Press, Princeton–Oxford (2016).

    Book  Google Scholar 

  16. V. N. Karpushkin, “A uniform estimate theorem for oscillating integrals with phase depending on two variables,” Trudy Sem. im. I. G. Petrovskogo, 10, 150–169 (1984).

    MathSciNet  Google Scholar 

  17. L. Hörmander, Analysis of Linear Partial Differential Operators. V. 1 [in Russian], Mir, Moscow (1986).

  18. G. Mokenhaupt, “Bounds in Lebesgue spaces of oscillatory integral operators,” Habilitationsschrift, Universität Siegen (1996).

    Google Scholar 

  19. V. P. Palamodov, “Generalized functions and harmonic analysis,” Sovrem. Probl. Mat. Fundam. Napravl., 72, 5–134 (1991).

    MathSciNet  Google Scholar 

  20. D. H. Phong, E. M. Stein, and J. A. Sturm, “On the growth and stability of real-analytic functions,” Am. J. Math., 121, No. 3, 519–554 (1999).

    Article  MathSciNet  Google Scholar 

  21. D. A. Popov, “Estimates with constants for some classes of oscillating integrals,” Usp. Mat. Nauk, 52, No. 1, 77–148 (1997).

    Google Scholar 

  22. B. Randol, “On the asymptotic behavior of the Fourier transform of the indicator function of a convex set,” Trans. Am. Math. Soc., 139, 278–285 (1970).

    MathSciNet  Google Scholar 

  23. A. S. Sadullaev, “Criteria for the algebraicity of analytic sets,” Funkts. Analiz i Ego Prilozh., 6, No. 1, 85-86 (1972).

    Google Scholar 

  24. A. Sadullaev, “On Weierstrass polynomials,” Ann. Pol. Mat., 123, 473–479 (2019).

    Google Scholar 

  25. A. Sadullaev and I. A. Ikromov, “Oscillatory integrals and Weierstrass polynomials,” Bull. Nat. Univ. Uzbekistan. Math. Nat. Sci., 2, No. 2, 125–139 (2019).

    Article  Google Scholar 

  26. C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Univ. Press, Cambridge (1993).

    Book  Google Scholar 

  27. C. D. Sogge and E. M. Stein, “Averages of functions over hypersurfaces in ℝn,” Invent. Math., 82, No. 3, 543–556 (1985).

    Article  MathSciNet  Google Scholar 

  28. E. M. Stein, Harmonic Analysis: Real-Valued Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton (1993).

    Google Scholar 

  29. I. Svensson, “Estimates for the Fourier transform of the characteristic function of a convex set,” Ark. Mat., 9, No. 1, 11–22 (1970).

    MathSciNet  Google Scholar 

  30. J. G. van der Corput, “Zur Methode der stationaren Phase. I,” Composito Math., 1, 15–38 (1934).

    Google Scholar 

  31. A. N. Varchenko, “Newton polytopes and estimates for oscillating integrals,” Funkts. Analiz i Ego Prilozh., 10, No. 3, 13–38 (1976).

    Google Scholar 

  32. I. M. Vinogradov, Method of Trigonometric Sums in Number Theory [in Russian], Nauka, Moscow (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Ikromov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 67, No. 4, Science — Technology — Education — Mathematics — Medicine, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikromov, I.A., Sadullaev, A.S. Weierstrass Polynomials in Estimates of Oscillatory Integrals. J Math Sci 278, 439–462 (2024). https://doi.org/10.1007/s10958-024-06932-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06932-5

Keywords

Navigation