Skip to main content
Log in

Statistical Ergodic Theorem in Symmetric Spaces for Infinite Measures

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let (Ω, μ) be a measurable space with a σ-finite continuous measure, μ(Ω) = ∞. A linear operator T : L1(Ω) + L(Ω) → L1(Ω) + L(Ω) is called a Dunford–Schwartz operator if ∥T(f)∥1 ≤ ∥f1 (respectively, ∥T(f)∥ ≤ ∥f) for all fL1(Ω) (respectively, fL(Ω)). If {Tt}t≥0 is a strongly continuous in L1(Ω) semigroup of Dunford–Schwartz operators, then each operator At(f) = \(\frac{1}{t}\underset{0}{\overset{t}{\int }}{T}_{s}\left(f\right)ds\in {L}_{1}\left(\Omega \right)\), fL1(Ω) has a unique extension to a Dunford–Schwartz operator, which is also denoted by At, t > 0. It is proved that in a completely symmetric space E(Ω) ⊈ L1 of measurable functions on (Ω, μ) the means At converge strongly as t → +∞ for each strongly continuous in L1(Ω) semigroup {Tt}t≥0 of Dunford–Schwartz operators if and only if the norm ∥·∥E(Ω) is order continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press Inc., Boston, etc. (1988).

  2. V. Chilin, D. Cömez, and S. Litvinov, “Individual ergodic theorems for infinite measure,” ArXiv, 1907.04678v1 [math.FA] (2019).

  3. V. Chilin and S. Litvinov, “Noncommutative weighted individual ergodic theorems with continuous time,” ArXiv, 1809.01788v1 [math.FA] (2018).

  4. V. Chilin and S. Litvinov, “Almost uniform and strong convergences in ergodic theorems for symmetric spaces,” Acta Math. Hungar., 157, No. 1, 229–253 (2019).

    Article  MathSciNet  Google Scholar 

  5. V. Chilin and S. Litvinov, “Noncommutative weighted individual ergodic theorems with continuous time,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23, No. 2, 2050013 (2020).

  6. V. I. Chilin and A. S. Veksler, “Mean ergodic theorem in function symmetric spaces for infinite measure,” Uzb. Math. J., No. 1, 35–46 (2018).

  7. P. G. Dodds, T. K. Dodds, and B. Pagter, “Noncommutative Köthe duality,” Trans. Am. Math. Soc., 339, 717–750 (1993).

    MathSciNet  Google Scholar 

  8. P. G. Dodds, T. K. Dodds, and F. A. Sukochev, “Banach–Saks properties in symmetric spaces of measurable operators,” Studia Math., 178, 125–166 (2007).

    Article  MathSciNet  Google Scholar 

  9. N. Dunford, and J. T. Schwartz, Linear Operators. Part I: General Theory, John Willey & Sons, New York, etc. (1988).

  10. A. Garsia, Topics in Almost Everywhere Convergence, Markham Publishing Company, Chicago (1970).

    Google Scholar 

  11. L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  12. S. G. Krein, Ju. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Am. Math. Soc., Providence (1982).

  13. U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin–New York (1985).

    Book  Google Scholar 

  14. B. A. Rubshtein, M. A. Muratov, G. Ya. Grabarnik, and Yu. S. Pashkova, Foundations of Symmetric Spaces of Measurable Functions. Lorentz, Marcinkiewicz and Orlicz Spaces, Springer, Cham (2016).

  15. F. Sukochev and A. Veksler, “The Mean Ergodic Theorem in symmetric spaces,” C.R. Acad. Sci. Paris. Ser. I, 355, 559–562 (2017).

  16. F. Sukochev and A. Veksler, “The Mean Ergodic Theorem in symmetric spaces,” Studia Math., 245, No. 3, 229–253 (2019).

    Article  MathSciNet  Google Scholar 

  17. A. S. Veksler, “Ergodic theorem in symmetric spaces,” Sib. Mat. Zh., 26, No. 4, 189–191 (1985).

    MathSciNet  Google Scholar 

  18. A. S. Veksler, “Statistical ergodic theorem in inseparable symmetric function spaces,” Sib. Mat. Zh., 29, No. 3, 183–185 (1988).

    Google Scholar 

  19. A. S. Veksler, Statistical Ergodic Theorems in Permutation-Invariant Spaces of Measurable Functions [in Russian], Lambert Academic Publishing, Beau Bassin (2018).

    Google Scholar 

  20. A. S. Veksler and A. L. Fedorov, Symmetric Spaces and Statistical Ergodic Theorems for Automophisms and Flows [in Russian], FAN, Tashkent (2016).

  21. D. A. Vladimirov, Boolean Algebras in Analysis, Kluwer Academic Publishers, Dordrecht (2002).

    Book  Google Scholar 

  22. K. Yosida, Functional Analysis, Springer Verlag, Berlin–Göttingen–Heidelberg (1965).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Veksler.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 67, No. 4, Science — Technology — Education — Mathematics — Medicine, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veksler, A.S., Chilin, V.I. Statistical Ergodic Theorem in Symmetric Spaces for Infinite Measures. J Math Sci 278, 426–438 (2024). https://doi.org/10.1007/s10958-024-06931-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06931-6

Keywords

Navigation