Skip to main content
Log in

Generalized Localization and Summability Almost Everywhere of Multiple Fourier Series and Integrals

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

It is well known that Luzin’s conjecture has a positive solution for one-dimensional trigonometric Fourier series, but in the multidimensional case it has not yet found its confirmation for spherical partial sums of multiple Fourier series. Historically, progress in solving Luzin’s conjecture has been achieved by considering simpler problems. In this paper, we consider three of these problems for spherical partial sums: the principle of generalized localization, summability almost everywhere, and convergence almost everywhere of multiple Fourier series of smooth functions. A brief overview of the work in these areas is given and unsolved problems are mentioned and new problems are formulated. Moreover, at the end of the work, a new result on the convergence of spherical sums for functions from Sobolev classes is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sh. A. Alimov, R. R. Ashurov, and A. K. Pulatov, “Multiple Fourier series and integrals,” Itogi Nauki i Tekhn. Sovrem. Probl. Mat., 42, 7–104 (1989).

    Google Scholar 

  2. Sh. A. Alimov, V. A. Il’in, and E. M. Nikishin, “Convergence problems for multiple trigonometric series and spectral expansions. I,” Usp. Mat. Nauk, 31, 29–86 (1976).

  3. R. R. Ashurov, “On localization conditions for spectral expansions of elliptic operators with constant coefficients,” Mat. Zametki, 33, 434–439 (1983).

    Google Scholar 

  4. R. R. Ashurov, “Summability almost everywhere of Fourier series of functions from Lp in eigenfunctions,” Mat. Zametki, 34, 837–843 (1983).

    MathSciNet  Google Scholar 

  5. R. R. Ashurov, “Localization conditions for trigonometric Fourier series,” Dokl. AN SSSR, 31, 496–499 (1985).

    Google Scholar 

  6. R. R. Ashurov, “Summability of multiple trigonometric Fourier series,” Mat. Zametki, 49, 563–568 (1991).

    MathSciNet  Google Scholar 

  7. R. R. Ashurov, “Spectral decompositions of elliptic pseudodifferential operators,” Uzb. Mat. Zh., 6, 20–29 (1998).

    Google Scholar 

  8. R. R. Ashurov, “Generalized localization for spherical partial sums of multiple Fourier series,” J. Fourier Anal. Appl., 25, No. 6, 3174–3183 (2019).

    Article  MathSciNet  Google Scholar 

  9. R. R. Ashurov, “Generalized localization for spherical partial sums of multiple Fourier series,” Dokl. RAN, 489, 7–10 (2019).

    Google Scholar 

  10. R. R. Ashurov, A. Ahmedov, and B. Mahmud Ahmad Rodzi, “The generalized localization for multiple Fourier integrals,” J. Math. Anal. Appl., 371, 832–841 (2010).

  11. R. R. Ashurov and A. Butaev, “On generalized localization of Fourier inversion for distributions,” In: Topics in Functional Analysis and Algebra, USA–Uzbekistan Conf. on Anal. and Math. Phys., California State Univ., Fullerton, USA, May 20–23, 2014, American Mathematical Society, Providence, pp. 33–50 (2016).

  12. R. R. Ashurov and K. T. Buvaev, “Summability almost everywhere of multiple Fourier integrals,” Diff. Uravn., 53, 750–760 (2017).

    Google Scholar 

  13. R. R. Ashurov and A. Butaev, “On pointwise convergence of continuous wavelet transforms,” Uzb. Math. J., 1, 2–24 (2018).

    MathSciNet  Google Scholar 

  14. R. R. Ashurov, A. Butaev, and B. Pradhan, “On generalized localization of Fourier inversion associated with an elliptic operator for distributions,” Abstr. Appl. Anal., 2012, 649848 (2012).

    Article  MathSciNet  Google Scholar 

  15. R. R. Ashurov and Yu. E. Fayziev, “Generalized localization principle for continuous wavelet expansions,” Mat. Zametki, 106, 75–81 (2019).

    Google Scholar 

  16. K. I. Babenko, “On summability and convergence of expansions in eigenfunctions of a differential operator,” Mat. Sb., 91, 147–201 (1973).

    MathSciNet  Google Scholar 

  17. A. Y. Bastis, “Generalized localization principle for N-fold Fourier integral,” Dokl. AN SSSR, 278, 777–778 (1984).

    MathSciNet  Google Scholar 

  18. A. Y. Bastis, “Generalized localization for Fourier series in eigenfunctions of the Laplace operator in the Lp classes,” Litov. Mat. Sb., 31, 387–405 (1991).

    MathSciNet  Google Scholar 

  19. I. L. Bloshanskiy, “On uniform convergence of trigonometric series and Fourier integrals,” Mat. Zametki, 18, 675–684 (1975).

    MathSciNet  Google Scholar 

  20. A. Carbery, E. Romera, and F. Soria, “Radial weights and mixed norm inequalities for the disc multiplier,” J. Funct. Anal., 109, 52–75 (1992).

    Article  MathSciNet  Google Scholar 

  21. A. Carbery, J. L. Rubio de Francia, and L. Vega, “Almost everywhere summability of Fourier integrals,” J. London Math. Soc. (2), 38, 513–524 (1988).

    Article  MathSciNet  Google Scholar 

  22. A. Carbery and F. Soria, “Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an L2-localization principle,” Rev. Mat. Iberoam., 4, 319–337 (1988).

    Article  Google Scholar 

  23. A. Carbery and F. Soria, “Pointwise Fourier inversion and localization in Rn,” J. Fourier Anal. Appl., 3, Special Issue, 847–858 (1997).

  24. L. Carleson, “On convergence and growth of partial sums of Fourier series,” Acta Math., 116, 135–157 (1966).

    Article  MathSciNet  Google Scholar 

  25. C. Fefferman, “On the divergence of multiple Fourier series,” Bull. Am. Math. Soc., 77, 191–195 (1971).

    Article  MathSciNet  Google Scholar 

  26. L. Grafakos, Classical Fourier Analysis, Springer, New York (2008).

    Book  Google Scholar 

  27. R. A. Hunt, “On convergence of Fourier series,” Proc. Conf. on Orthogonal Expansions and Their Continuous Analogues, Univ. Press, Edwardsville–Carbondale, pp. 235–255 (1968).

  28. V. A. Il’in, “On generalized interpretation of the localization principle for Fourier series in fundamental systems of functions,” Sib. Mat. Zh., 9, No. 5, 1093–1106 (1968).

  29. C. E. Kenig and P. A. Tomas, “Maximal operators defined by Fourier multipliers,” Studia Math., 68, 79–83 (1980).

    Article  MathSciNet  Google Scholar 

  30. S. Lee, “Improved bounds for Bochner–Riesz and maximal Bochner–Riesz operators,” Duke Math. J., 122, 205–232 (2004).

    Article  MathSciNet  Google Scholar 

  31. Sh. Lu, “Conjectures and problems in Bochner–Riesz means,” Front. Math. China., 8, 1237–1251 (2013).

    Article  MathSciNet  Google Scholar 

  32. J. Mitchell, “On the summability of multiple orthogonal series,” Trans. Am. Math. Soc., 71, 136–151 (1951).

    Article  MathSciNet  Google Scholar 

  33. B. Randol, “On the asymptotic behavior of the Fourier transform of the indicator function of the convex set,” Trans. Am. Math. Soc., 139, 279–285 (1969).

    Article  MathSciNet  Google Scholar 

  34. P. Sjölin, “Convergence almost everywhere of certain singular integrals and multiple Fourier series,” Ark. Mat., 9, 65–90 (1971).

    Article  MathSciNet  Google Scholar 

  35. P. Sjölin, “Regularity and integrability of spherical means,” Monatsh. Math., 96, 277–291 (1983).

    Article  MathSciNet  Google Scholar 

  36. E. M. Stein, “Localization and summability of multiple Fourier series,” Acta Math., 1-2, 93–147 (1958).

    Article  MathSciNet  Google Scholar 

  37. E. M. Stein, “On limits of sequences of operators,” Ann. Math., 74, 140–170 (1961).

    Article  MathSciNet  Google Scholar 

  38. E. M. Stein, “Some problems in harmonic analysis,” In: Harmonic Analysis in Euclidean Spaces. Part 1, Am. Math. Soc., Providence, pp. 3–20 (1978).

  39. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton (1971).

    Google Scholar 

  40. T. Tao, “The weak-type endpoint Bochner–Riesz conjecture and related topics,” Indiana Univ. Math. J., 47, 1097–1124 (1998).

    Article  MathSciNet  Google Scholar 

  41. T. Tao, “On the maximal Bochner–Riesz conjecture in the plane for p < 2,” Trans. Am. Math. Soc., 354, 1947–1959 (2002).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Ashurov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 67, No. 4, Science — Technology — Education — Mathematics — Medicine, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashurov, R.R. Generalized Localization and Summability Almost Everywhere of Multiple Fourier Series and Integrals. J Math Sci 278, 408–425 (2024). https://doi.org/10.1007/s10958-024-06930-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06930-7

Keywords

Navigation