Skip to main content
Log in

Algorithm for the Numerical Solution of the Stefan Problem and its Application to Calculations of the Temperature of Tungsten Under Impulse Action

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present the numerical solution of the Stefan problem to calculate the temperature of the tungsten sample heated by the laser pulse. Mathematical modeling is carried out to analyze field experiments, where an instantaneous heating of the plate to 9000K is observed due to the effect of a heat flow on its surface and subsequent cooling. The problem is characterized by nonlinear coefficients and boundary conditions. An important role is played by the evaporation of the metal from the heated surface. Basing on Samarskii’s approach, we choose to implement the method of continuous counting considering the heat conductivity equation in a uniform form in the entire domain using the Dirac delta function. The numerical method has the second-order of approximation with respect to space, the interval of smoothing of the coefficients is 5K. As a result, we obtain the temperature distributions on the surface and in the cross section of the sample during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Apushkinskaya, Free Boundary Problems. Regularity Properties Near the Fixed Boundary, Springer, Cham (2018).

  2. A. S. Arakcheev, D. E. Apushkinskaya, I. V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, G. G. Lazareva, A. G. Maksimova, V. A. Popov, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, and L. N. Vyacheslavov, “Two-dimensional numerical simulation of tungsten melting under pulsed electron beam,” Fusion Eng. Design, 132, 13–17 (2018).

    Article  Google Scholar 

  3. R. V. Arutyunyan, “Integral equations of the Stefan problem and their application in modeling of soil thawing,” In: Science and Education, MGTU, Moscow, No. 10, 347–419 (2015).

  4. P. V. Breslavskiy and V. I. Mazhukin, “Algorithm for numerical solution of the hydrodynamic version of the Stefan problem using dynamically adapting grids,” Mat. Model., 3, No. 10, 104–115 (1991).zz

  5. B. M. Budak, E. N. Solov’eva, and A. B. Uspenskiy, “Difference method with smoothing of coefficients for solving Stefan’s problems,” Zhurn. Vych. Mat. i Mat. Fiz., 5, No. 5, 828–840 (1965).

  6. L. A. Caffarelli, “The smoothness of the free surface in a filtration problem,” Arch. Ration. Mech. Anal., 63, 77–86 (1976).

    Article  MathSciNet  Google Scholar 

  7. L. A. Caffarelli, “The regularity of elliptic and parabolic free boundaries,” Bull. Am. Math. Soc., 82, 616–618 (1976).

    Article  MathSciNet  Google Scholar 

  8. L. A. Caffarelli, “The regularity of free boundaries in higher dimensions,” Acta Math., 139, No. 3-4, 155–184 (1977).

    Article  MathSciNet  Google Scholar 

  9. H. Chen, C. Min, and F. Gibou, “A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate,” J. Comp. Phys., 228, 5803–5818 (2009).

    Article  Google Scholar 

  10. J. W. Davis and P. D. Smith, “ITER material properties handbook,” J. Nucl. Mater., 233, 1593–1596 (1996).

    Article  Google Scholar 

  11. G. Duvaut, “Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré),” C. R. Math. Acad. Sci. Paris, 276, 1461–1463 (1973).

    MathSciNet  Google Scholar 

  12. G. Duvaut, “Two phases Stefan problem with varying specific heat coefficients,” An. Acad. Brasil. Ciênc., 47, 377–380 (1975).

    MathSciNet  Google Scholar 

  13. A. Friedman and D. Kinderlehrer, “A one phase Stefan problem,” Indiana Univ. Math. J., 25, No. 11, 1005–1035 (1975).

    Article  MathSciNet  Google Scholar 

  14. R. Groot, “Second order front tracking algorithm for Stefan problem on a regular grid,” J. Comp. Phys., 372, 956–971 (2018).

    Article  MathSciNet  Google Scholar 

  15. C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal conductivity of elements,” J. Phys. Chem. Ref. Data, 1, 279 (1972).

    Article  Google Scholar 

  16. J. M. Huang, M. Shelley, and D. Stein, “A stable and accurate scheme for solving the Stefan problem coupled with natural convection using the immersed boundary smooth extension method,” J. Comp. Phys., 432, 110162 (2021).

    Article  MathSciNet  Google Scholar 

  17. Y. Ichikawa and N. Kikuchi, “A one-phase multidimensional Stefan problem by the method of variational inequalities,” Internat. J. Numer. Methods Engrg., 14, 1197–1220 (1979).

    Article  MathSciNet  Google Scholar 

  18. Y. Ichikawa and N. Kikuchi, “Numerical methods for a two-phase Stefan problem by variational inequalities,” Internat. J. Numer. Methods Engrg., 14, 1221–1239 (1979).

    Article  Google Scholar 

  19. M. Yu. Laevskiy and A. A. Kalinkin, “Two-temperature model of a hydrate-bearing rock,” Mat. Model., 22, No. 4, 23–31 (2010).

    Google Scholar 

  20. G. Lamé and B. P. Clapeyron, “Mémoire sur la solidification par refroidissement d’un globe solide,” Ann. Chem. Phys., 47, 250–256 (1831).

    Google Scholar 

  21. G.G. Lazareva, A. S.Arakcheev, I.V. Kandaurov, A. A. Kasatov, V. V. Kurkuchekov, A. G. Maksimova, V. A. Popov, A. A. Shoshin, A. V. Snytnikov, Yu. A. Trunev, A. A. Vasilyev, and L. N. Vyacheslavov, “Calculation of heat sink around cracks formed under pulsed heat load,” J. Phys. Conf. Ser., 894, 012120 (2017).

    Article  Google Scholar 

  22. A. M. Oberman and I. Zwiers, “Adaptive finite difference methods for nonlinear elliptic and parabolic partial differential equations with free boundaries,” J. Sci. Comput., 68, 231–251 (2012).

    Article  MathSciNet  Google Scholar 

  23. G. Pottlacher, “Thermal conductivity of pulse-heated liquid metals at melting and in the liquid phase,” J. Noncrystal. Solids, 250, 177–181 (1999).

    Article  Google Scholar 

  24. A. A. Samarskii and B. D. Moiseenko, “Economical pass-through numerical scheme for multidimensional Stefan problem,” Zhurn. Vych. Mat. i Mat. Fiz., 5, No. 5, 816–827 (1965).

    Google Scholar 

  25. A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer [in Russian], URSS, Moscow (2003).

    Google Scholar 

  26. J. Stefan, “Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere,” Sitzungsber. Österreich. Akad. Wiss. Math. Naturwiss. Kl. Abt. 2, Math. Astron. Phys. Meteorol. Tech., 98, 965–983 (1889).

  27. S. G. Taluts, “Experimental study of thermophysical properties of transition metals and ironbased alloys at high temperatures,” Doctoral Thesis, Ekaterinburg, 2001.

  28. L. Vyacheslavov, A. Arakcheev, A. Burdakov, I. Kandaurov, A. Kasatov, V. Kurkuchekov, K. Mekler, V. Popov, A. Shoshin, D. Skovorodin, Y. Trunev, and A. Vasilyev, “Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads,” AIP Conf. Proc., 1771, 060004 (2016).

    Article  Google Scholar 

  29. Z.-C. Wu and Q.-C. Wang, “Numerical approach to Stefan problem in a two-region and limited space,” Thermal Sci., 16, No. 5, 1325–1330 (2012).

    Article  Google Scholar 

  30. N. N. Yanenko, Fractional Steps Method for Solving Multidimensional Problems of Mathematical Physics [in Russian], Nauka, Novosibirsk (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Apushkinskaya.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 67, No. 3, In honor of the 70th anniversary of Professor V. M. Filippov, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apushkinskaya, D.E., Lazareva, G.G. Algorithm for the Numerical Solution of the Stefan Problem and its Application to Calculations of the Temperature of Tungsten Under Impulse Action. J Math Sci 278, 225–236 (2024). https://doi.org/10.1007/s10958-024-06916-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06916-5

Keywords

Navigation