Abstract
The paper contains a survey of known results on the structure of J-symmetric operator algebras in Pontryagin and Krein spaces, as well as on representations of groups and *-algebras in these spaces.
Similar content being viewed by others
References
T. Ya. Azizov and N. D. Kopachevsky, Introduction to the Theory of Pontryagin Spaces: a Special Course of Lectures [in Russian], Forma, Simferopol (2008).
T. Ya. Azizov and N. D. Kopachevsky, Introduction to the Theory of Krein Spaces: a Special Course of Lectures [in Russian], Forma, Simferopol (2010).
T. Ya. Azizov and N. D. Kopachevsky, Applications of Indefinite Metric [in Russian], DIAYPI, Simferopol (2014).
O. Ya. Benderskii, S. N. Litvinov, and V. I. Chilin, “Description of commutative symmetric algebras of operators on Pontryagin space Π1,” J. Operator Theory, 37, 201–222 (1997).
B. Blackadar and J. Cuntz, “Differential Banach algebra norms and smooth subalgebras of C*-algebras,” J. Operator Theory, 26, 255–282 (1991).
O. Bratteli and D. Robinson, “Unbounded derivations of C*-algebras, I,” Commun. Math. Phys., 42, 253–268 (1975).
O. Bratteli and D. Robinson, “Unbounded derivations of C*-algebras, II,” Commun. Math. Phys., 46, 11–30 (1976).
V. I. Chilin and S. Sh. Masharipova, “Functional calculus for the algebra of operators generated by a self-adjoint operator in Pontryagin’s space Π1. II. Exceptional case in the model of type 1,” Indian J. Math., 58, 18–37 (2016).
V. I. Chilin and S. Sh. Masharipova, “Functional calculus for the algebra of operators generated by a self-adjoint operator in Pontryagin’s space Π1,” Proc. 8th Int. Conf. Topological Algebras and Their Applications, 2014, Walter de Gruyter, Berlin–Boston, pp. 55–72 (2018).
J. Cuntz, “Locally C*-equivalent algebras,” J. Funct. Anal., 23, 95–106 (1976).
K. Yu. Dadashyan and S. S. Khoruzhiy, “On field algebras in quantum theory with an indefinite metric, I,” Teor. Mat. Fiz., 54, No. 1, 57–77 (1983).
K. Yu. Dadashyan and S. S. Khoruzhiy, “On field algebras in quantum theory with an indefinite metric, II,” Teor. Mat. Fiz., 2, No. 1, 30–44 (1985).
K. Yu. Dadashyan and S. S. Khoruzhiy, “On field algebras in quantum theory with an indefinite metric, III,” Teor. Mat. Fiz., 70, No. 2, 181–191 (1987).
K. Yu. Dadashyan and S. S. Khoruzhiy, “On field algebras in quantum theory with an indefinite metric, IV,” Teor. Mat. Fiz., 72, No. 3, 340–351 (1987).
I. M. Gel’fand and M. A. Naymark, “Unitary representations of classical groups,” Tr. MIAN, 36, 3–288 (1950).
I. Gohberg, P. Lancaster, and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser, Basel (2005).
A. Guichardet, “Sur la cohomologie des groupes topologiques,” Bull. Sci. Math., 95, 161–176 (1971).
J. W. Helton, “Unitary operators on a space with an indefinite inner product,” J. Funct. Anal., 6, 412–440 (1970).
J. W. Helton, “Operators unitary in an indefinite metric and linear fractional transformations,” Acta Sci. Math., 32, 261–266 (1971).
I. S. Iokhvidov, “Unitary operators in spaces with indefinite metric,” Zametki NII Mat. i Mekh. Khar’kov. Un-ta, 21, 79–86 (1949).
R. S. Ismagilov, “Description of unitary representations of the Lorentz group in a space with an indefinite metric,” Dokl. AN SSSR, 158, No. 2, 268–270 (1964).
R. S. Ismagilov, “Rings of operators in spaces with indefinite metric,” Dokl. AN SSSR, 171, No. 2, 269–271 (1966).
R. S. Ismagilov, “Unitary representations of the Lorentz group in spaces with indefinite metric,” Izv. AN SSSR, 30, No. 3, 497–522 (1966).
R. S. Ismagilov, “On the problem of extending representations,” Mat. Zametki, 35, No. 1, 99–106 (1984).
R. S. Ismagilov, “On irreducibility of representations of a group of currents,” Funkts. Analiz i Ego Prilozh., 28, 21–30 (1994).
P. E. Jorgensen and P. S. Muhly, “Self-adjoint extensions satisfying the Weyl operator commutation relations,” J. D’Anal. Math., 37, 46–99 (1980).
E. Kissin, “Symmetric operator extensions of unbounded derivations of C*-algebras,” J. Funct. Anal., 81, 38–53 (1988).
E. Kissin, “Dissipative implementations of *-derivation of C*-algebras and representations in indefinite metric spaces,” J. London. Math. Soc. (2), 43, 451–464 (1991).
E. Kissin, “Representational indices of derivations of C*-algebras and representations of *-algebras on Krein spaces,” J. Reine Angew Math., 439, 71–92 (1993).
E. Kissin, “Semigroups of representational indices of derivations of C*-algebras,” J. Funct. Anal., 126, 139–168 (1994).
E. Kissin, “Derivations of C*-algebras which contain all compact operators and representations of Q-subalgebras of these algebras on Πk-spaces,” J. London. Math. Soc. (2), 51, 161–174 (1995).
E. Kissin, “Derivations of C*-algebras and representations on deficiency spaces of skewsymmetric operators,” Proc. London Math. Soc. (3), 76, No. 2, 476–496 (1998).
E. Kissin, A. I. Loginov, and V. S. Shulman, “Derivations of C*-algebras and almost Hermitian representations on Πk-spaces,” Pacific J. Math., 174, 411–430 (1996).
E. Kissin and V. S. Shulman, “Differential properties of some dense subalgebras of C*-algebras,” Proc. Edinb. Math. Soc., 37, 399–422 (1994).
E. Kissin and V. S. Shulman, Representations on Krein Spaces and Derivations of C*-Algebras, Longman, Harlow (1997).
E. Kissin and V. S. Shulman, “Nonunitary representations of nilpotent groups, I: Cohomologies, extensions and neutral cocycles,” J. Funct. Anal., 269, 2564–2610 (2015).
E. Kissin and V. S. Shulman, “Representations of nilpotent groups on spaces with indefinite metric,” Integral Equ. Operator Theory, 87, 81–116 (2017).
E. Kissin and V. S. Shulman, V. S. Turovskii, “Pontryagin–Krein theorem: Lomonosov’s proof and related results,” In: The Mathematical Legacy of Victor Lomonosov. Operator Theory, De Gruyter, Berlin, pp. 231–250 (2020).
M. G. Krein, “On one application of the fixed point principle in the theory of linear transformations of spaces with indefinite metric,” Usp. Mat. Nauk, 5, No. 2, 180–190 (1950).
M. G. Krein, “On integral representation of a continuous Hermitian-indefinite function with a finite number of negative squares,” Dokl. AN SSSR, 125, No. 1, 31–34 (1959).
V. I. Liberzon and V. S. Shul’man, “Operator-irreducible operator algebras in the Pontryagin space Π1,” Izv. AN SSSR, 35, No. 5, 1159–1170 (1971).
V. I. Liberzon and V. S. Shul’man, “Nondegenerate operator algebras in spaces with indefinite metric,” Izv. AN SSSR, 37, No. 3, 533–538 (1973).
S. N. Litvinov, “Bicyclic WJ*-algebras in the Pontryagin space of type Π1,” Funkts. Analiz i Ego Prilozh., 26, No. 3, 46–54 (1992).
A. I. Loginov, “On commutative symmetric operator algebras in Pontryagin spaces,” Izv. AN SSSR, 33, No. 3, 559–569 (1969).
A. I. Loginov, “Complete commutative symmetric operator algebras in the Pontryagin space Π1,” Mat. Sb., 84, No. 4, 575–582 (1971).
A. I. Loginov, “One generalization of the Markov–Kakutani fixed point theorem,” Funkts. Analiz i Ego Prilozh., 14, No. 2, 65–66 (1980).
A. I. Loginov and V. S. Shul’man, “Irreducible J-symmetric operator algebras in spaces with indefinite metric,” Dokl. AN SSSR, 240, No. 1, 21–23 (1978).
A. I. Loginov and V. S. Shul’man, “Vector-valued duality for modules over Banach algebras,” Izv. AN SSSR, 57, No. 4, 3–35 (1993).
V. I. Lomonosov, “On invariant subspaces of the family of operators commuting with a completely continuous one,” Funkts. Analiz i Ego Prilozh., 7, No. 3, 55–56 (1973).
V. I. Lomonosov, “On stability of nonnegative invariant subspaces,” In: New Results in Operator Theory and Its Applications: the Israel M. Glazman Memorial Volume, Birkh¨auser, Basel, pp. 186–189 (1997).
S. Sh. Masharipova and V. I. Chilin, “Functional calculus in symmetric operator algebras in the Pontryagin space Π1,” Dokl. AN Uzbek. SSR, 14, 10–12 (1994).
S. Sh. Masharipova and V. I. Chilin, “Kaplansky’s density theorem for symmetric operator algebras in Π1,” Uzbek. Mat. Zh., 2, 68–75 (1996).
H. Nakazato, “Indefinite inner product spaces and derivations,” Math. Japonica, 35, 1119–1124 (1990).
M. A. Naymark, “On permutation unitary operators in the space Πk,” Dokl AN SSSR, 149, 1261–1263 (1963).
M. A. Naymark, “On unitary representations of solvable groups in spaces with indefinite metric,” Izv. AN SSSR, 27, 1181–1185 (1963).
M. A. Naymark, “Kommutative Algebren von Operatoren im Raume Π1,” Rev. Roumaine Math. Pures Appl., 9, No. 6, 499–528 (1964).
M. A. Naymark, “On commutative algebras of operators in the space Πk,” Dokl AN SSSR, 161, No. 4, 767–770 (1965).
M. A. Naymark, “On the structure of unitary representations of locally compact groups in Pontryagin spaces Π1,” Izv. AN SSSR, 29, No. 4, 689–770 (1965).
M. A. Naymark, “On the structure of unitary representations of locally compact groups and symmetric representations in Pontryagin spaces Πk,” Izv. AN SSSR, 30, No. 5, 1111–1132 (1966).
M. A. Naymark and R. S. Ismagilov, “Representations of groups and algebras in spaces with indefinite metric, Itogi Nauki i Tekhn. Ser. Mat. Mat. Analiz, 1968, 73–105 (1969).
M. Ostrovskii, V. S. Shulman, and L. Turowska, “Unitarizable representations and fixed points of groups of holomorphic transformations of operator balls,” J. Funct. Anal., 257, 2476–2496 (2009).
M. Ostrovskii, V. S. Shulman, and L. Turowska, “Fixed points of holomorphic transformations of operator balls,” Q. J. Math., 62, 173–187 (2011).
S. Ota, “Certain operator algebras induced by *-derivations in C*-algebras on an indefinite product space,” J. Funct. Anal., 30, 238–244 (1978).
R. S. Phillips, “Dissipative operators and hyperbolic systems of partial differential equations,” Matematika, 6, No. 4, 11–70 (1962).
R. S. Phillips, “The extension of dual subspaces invariant under an algebra,” Matematika, 8, No. 6, 81–108 (1964).
G. Pisier, Similarity Problems and Completely Bounded Maps. Includes the Solution to “The Halmos Problem”, Springer, Berlin (2001).
L. S. Pontryagin, “Hermitian operators in spaces with indefinite metric,” Izv. AN SSSR, 8, 243–280 (1944).
K. Sakai, “On J-unitary representations of amenable groups,” Rep. Fac. Sci. Kagoshima Univ., 26, 33–41 (1977).
K. Sakai, “On indecomposable unitary representations of locally compact abelian groups in Πn-spaces,” Rep. Fac. Sci. Kagoshima Univ., 27, 1–20 (1978).
K. Sakai, “On quasipositive definite functions and unitary representations of groups in Pontryagin spaces,” J. Math. Kyoto Univ., 19, 71–90 (1979).
K. Sakai, “Some remarks on unitary representations of the Euclidean motion group in Πn spaces,” Sci. Rep. Kagoshima Univ., 29, 13–26 (1980).
K. Sakai, “On indecomposable unitary representations of the 2-dimensional Euclidean motion group in fnite-dimensional indefinite inner product spaces,” Sci. Rep. Kagoshima Univ., 29, 27–51 (1980).
E. Samei and M. Wiersma, “Quasi-Hermitian locally compact groups are amenable,” Adv. Math., 359, 106897 (2020).
Z. Sasvari, “On bounded functions with a finite number of negative squares,” Monatsh. Math., 99, 223–234 (1985).
J. T. Schwartz, “Subdiagonalization of operators in Hilbert space with compact imaginary part,” Commun. Pure Appl. Math., 15, 159–172 (1962).
I. Shafrir, “Operators in hyperbolic spaces,” PhD Thesis, Technion — Israel Institute of Technology, Haifa, 1990.
A. A. Shkalikov, “On existence of invariant subspaces for dissipative operators in spaces with indefinite metric,” Tr. MIAN, 248, 294–303 (2005).
V. A. Shtraus, “Functional representation of the algebra generated by a self-adjoint operator in a Pontryagin space,” Funkts. Analiz i Ego Prilozh., 20, No. 1, 91-92 (1986).
V. S. Shul’man, “Banach symmetric operator algebras in a space of type Π1,” Mat. Sb., 89, No. 2, 264–279 (1972).
V. S. Shul’man, “On representations of C*-algebras in spaces with indefinite metric,” Mat. Zametki, 22, 583–592 (1977).
V. S. Shul’man, “One fixed point theorem,” Funkts. Analiz i Ego Prilozh., 13, No. 1, 88-89 (1979).
V. S. Shul’man, “On fixed points of linear-fractional mappings,” Funkts. Analiz i Ego Prilozh., 14, No. 2, 93–94 (1980).
V. S. Shul’man, “On modules over operator algebras,” Funkts. Analiz i Ego Prilozh., 17, No. 2, 94–95 (1983).
V. S. Shul’man, “Factorization of completely positive cocycles and the GNS-construction of representations in Pontryagin spaces,” Funkts. Analiz i Ego Prilozh., 31, No. 3, 91–94 (1997).
V. S. Shulman, “Quasivectors and Tomita–Takesaki theory for operator algebras on P1-spaces,” Rev. Math. Phys., 9, No. 6, 749–783 (1997).
S. L. Sobolev, “On the motion of a symmetrical top with a cavity filled with fluid,” Zhurn. Prikl. Mekh. i Tekhn. Fiz., No. 1, 55–60 (1949).
V. Strauss, “On the weakly closed algebra generated by a unitary operator in a Pontryagin space,” Oper. Matrices, 12, No. 3, 837–853 (2018).
V. Strauss, “On a functional calculus for unitary operators in Pontryagin spaces,” Oper. Matrices, 14, No. 3, 971–999 (2020).
W. Takahashi, “A convexity in metric spaces and nonexpansive mappings. I,” Kodai Math. Sem. Rep., 22, 142–149 (1970).
Y. Tong, “Commutative J-von Neumann algebras on Pontryagin spaces,” Chinese Ann. Math. Ser. A, 14, 429–436 (1993).
Y. Tong, “Two density theorems for sets of operators on Pontryagin spaces,” Acta Math. Sinica, 37, No. 1, 1–11 (1994).
Y. Tong, “Uniformly closed symmetric operator algebras on Pontryagin spaces,” Chinese Ann. Math. Ser. A, 15, 603–611 (1994).
Y. Tong, “A density theorem on the operator algebras in Pontryagin spaces,” J. Math. Anal. Appl., 268, 143–156 (2002).
A. Van Daele, “A framework to study commutational problems,” Bull. Soc. Math. France, 106, 289–309 (1978).
H. Yang, “On the symmetry of ideal in operator algebras on Pontryagin spaces,” Acta Math. Sinica, 47, 915–920 (2004).
H. Yang, “Structure of ideals of operator algbras on Pontryagin spaces,” Chinese Ann. Math. Ser. A, 28, No. 1, 103–110 (2007).
H. Yang, “The operator algebras of class I on the Pontryagin spaces,” J. Systems Sci. Math. Sci., 33, No. 2, 993–1006 (2013).
H. Yang, “Classification and general forms of operator algebras on Pontryagin space,” Acta Math. Sinica, 58, No. 3, 401–408 (2015).
H. Yang, Y. Fang, and S. Liu, “General form of operator algebras on Pontryagin spaces with neutral invariant subspaces,” Linear Algebra Appl., 425, 184–209 (2007).
H. Yang, Y. Fang, and S. Liu, “Invariant subspaces of JC*-algebras on Π1-spaces,” J. Systems Sci. Math. Sci., 28, No. 10, 1268–1274 (2008).
D. P. Zhelobenko, “Description of one class of representations of the Lorentz group,” Dokl. AN SSSR, 121, No. 4, 586–590 (1958).
Author information
Authors and Affiliations
Corresponding author
Additional information
To the blessed memory of Nikolai Dmitrievich Kopachevskii, a remarkable Mathematician and Human.
Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 67, No. 2, Dedicated to the memory of Professor N. D. Kopachevsky, 2021.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kissin, E.V., Shulman, V.S. On Representations of Groups and Algebras in Spaces with Indefinite Metric. J Math Sci 278, 91–107 (2024). https://doi.org/10.1007/s10958-024-06907-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-024-06907-6