Skip to main content
Log in

On Representations of Groups and Algebras in Spaces with Indefinite Metric

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The paper contains a survey of known results on the structure of J-symmetric operator algebras in Pontryagin and Krein spaces, as well as on representations of groups and *-algebras in these spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ya. Azizov and N. D. Kopachevsky, Introduction to the Theory of Pontryagin Spaces: a Special Course of Lectures [in Russian], Forma, Simferopol (2008).

  2. T. Ya. Azizov and N. D. Kopachevsky, Introduction to the Theory of Krein Spaces: a Special Course of Lectures [in Russian], Forma, Simferopol (2010).

  3. T. Ya. Azizov and N. D. Kopachevsky, Applications of Indefinite Metric [in Russian], DIAYPI, Simferopol (2014).

  4. O. Ya. Benderskii, S. N. Litvinov, and V. I. Chilin, “Description of commutative symmetric algebras of operators on Pontryagin space Π1,” J. Operator Theory, 37, 201–222 (1997).

    MathSciNet  Google Scholar 

  5. B. Blackadar and J. Cuntz, “Differential Banach algebra norms and smooth subalgebras of C*-algebras,” J. Operator Theory, 26, 255–282 (1991).

    MathSciNet  Google Scholar 

  6. O. Bratteli and D. Robinson, “Unbounded derivations of C*-algebras, I,” Commun. Math. Phys., 42, 253–268 (1975).

    Article  Google Scholar 

  7. O. Bratteli and D. Robinson, “Unbounded derivations of C*-algebras, II,” Commun. Math. Phys., 46, 11–30 (1976).

    Article  MathSciNet  Google Scholar 

  8. V. I. Chilin and S. Sh. Masharipova, “Functional calculus for the algebra of operators generated by a self-adjoint operator in Pontryagin’s space Π1. II. Exceptional case in the model of type 1,” Indian J. Math., 58, 18–37 (2016).

    Google Scholar 

  9. V. I. Chilin and S. Sh. Masharipova, “Functional calculus for the algebra of operators generated by a self-adjoint operator in Pontryagin’s space Π1,” Proc. 8th Int. Conf. Topological Algebras and Their Applications, 2014, Walter de Gruyter, Berlin–Boston, pp. 55–72 (2018).

  10. J. Cuntz, “Locally C*-equivalent algebras,” J. Funct. Anal., 23, 95–106 (1976).

    Article  MathSciNet  Google Scholar 

  11. K. Yu. Dadashyan and S. S. Khoruzhiy, “On field algebras in quantum theory with an indefinite metric, I,” Teor. Mat. Fiz., 54, No. 1, 57–77 (1983).

    MathSciNet  Google Scholar 

  12. K. Yu. Dadashyan and S. S. Khoruzhiy, “On field algebras in quantum theory with an indefinite metric, II,” Teor. Mat. Fiz., 2, No. 1, 30–44 (1985).

    Google Scholar 

  13. K. Yu. Dadashyan and S. S. Khoruzhiy, “On field algebras in quantum theory with an indefinite metric, III,” Teor. Mat. Fiz., 70, No. 2, 181–191 (1987).

    Google Scholar 

  14. K. Yu. Dadashyan and S. S. Khoruzhiy, “On field algebras in quantum theory with an indefinite metric, IV,” Teor. Mat. Fiz., 72, No. 3, 340–351 (1987).

    MathSciNet  Google Scholar 

  15. I. M. Gel’fand and M. A. Naymark, “Unitary representations of classical groups,” Tr. MIAN, 36, 3–288 (1950).

  16. I. Gohberg, P. Lancaster, and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser, Basel (2005).

  17. A. Guichardet, “Sur la cohomologie des groupes topologiques,” Bull. Sci. Math., 95, 161–176 (1971).

    MathSciNet  Google Scholar 

  18. J. W. Helton, “Unitary operators on a space with an indefinite inner product,” J. Funct. Anal., 6, 412–440 (1970).

    Article  MathSciNet  Google Scholar 

  19. J. W. Helton, “Operators unitary in an indefinite metric and linear fractional transformations,” Acta Sci. Math., 32, 261–266 (1971).

    MathSciNet  Google Scholar 

  20. I. S. Iokhvidov, “Unitary operators in spaces with indefinite metric,” Zametki NII Mat. i Mekh. Khar’kov. Un-ta, 21, 79–86 (1949).

  21. R. S. Ismagilov, “Description of unitary representations of the Lorentz group in a space with an indefinite metric,” Dokl. AN SSSR, 158, No. 2, 268–270 (1964).

    MathSciNet  Google Scholar 

  22. R. S. Ismagilov, “Rings of operators in spaces with indefinite metric,” Dokl. AN SSSR, 171, No. 2, 269–271 (1966).

    MathSciNet  Google Scholar 

  23. R. S. Ismagilov, “Unitary representations of the Lorentz group in spaces with indefinite metric,” Izv. AN SSSR, 30, No. 3, 497–522 (1966).

    MathSciNet  Google Scholar 

  24. R. S. Ismagilov, “On the problem of extending representations,” Mat. Zametki, 35, No. 1, 99–106 (1984).

    MathSciNet  Google Scholar 

  25. R. S. Ismagilov, “On irreducibility of representations of a group of currents,” Funkts. Analiz i Ego Prilozh., 28, 21–30 (1994).

    MathSciNet  Google Scholar 

  26. P. E. Jorgensen and P. S. Muhly, “Self-adjoint extensions satisfying the Weyl operator commutation relations,” J. D’Anal. Math., 37, 46–99 (1980).

    Article  Google Scholar 

  27. E. Kissin, “Symmetric operator extensions of unbounded derivations of C*-algebras,” J. Funct. Anal., 81, 38–53 (1988).

    Article  MathSciNet  Google Scholar 

  28. E. Kissin, “Dissipative implementations of *-derivation of C*-algebras and representations in indefinite metric spaces,” J. London. Math. Soc. (2), 43, 451–464 (1991).

    Article  MathSciNet  Google Scholar 

  29. E. Kissin, “Representational indices of derivations of C*-algebras and representations of *-algebras on Krein spaces,” J. Reine Angew Math., 439, 71–92 (1993).

    MathSciNet  Google Scholar 

  30. E. Kissin, “Semigroups of representational indices of derivations of C*-algebras,” J. Funct. Anal., 126, 139–168 (1994).

    Article  MathSciNet  Google Scholar 

  31. E. Kissin, “Derivations of C*-algebras which contain all compact operators and representations of Q-subalgebras of these algebras on Πk-spaces,” J. London. Math. Soc. (2), 51, 161–174 (1995).

    Article  MathSciNet  Google Scholar 

  32. E. Kissin, “Derivations of C*-algebras and representations on deficiency spaces of skewsymmetric operators,” Proc. London Math. Soc. (3), 76, No. 2, 476–496 (1998).

  33. E. Kissin, A. I. Loginov, and V. S. Shulman, “Derivations of C*-algebras and almost Hermitian representations on Πk-spaces,” Pacific J. Math., 174, 411–430 (1996).

    Article  MathSciNet  Google Scholar 

  34. E. Kissin and V. S. Shulman, “Differential properties of some dense subalgebras of C*-algebras,” Proc. Edinb. Math. Soc., 37, 399–422 (1994).

    Article  MathSciNet  Google Scholar 

  35. E. Kissin and V. S. Shulman, Representations on Krein Spaces and Derivations of C*-Algebras, Longman, Harlow (1997).

    Google Scholar 

  36. E. Kissin and V. S. Shulman, “Nonunitary representations of nilpotent groups, I: Cohomologies, extensions and neutral cocycles,” J. Funct. Anal., 269, 2564–2610 (2015).

    Article  MathSciNet  Google Scholar 

  37. E. Kissin and V. S. Shulman, “Representations of nilpotent groups on spaces with indefinite metric,” Integral Equ. Operator Theory, 87, 81–116 (2017).

    Article  MathSciNet  Google Scholar 

  38. E. Kissin and V. S. Shulman, V. S. Turovskii, “Pontryagin–Krein theorem: Lomonosov’s proof and related results,” In: The Mathematical Legacy of Victor Lomonosov. Operator Theory, De Gruyter, Berlin, pp. 231–250 (2020).

  39. M. G. Krein, “On one application of the fixed point principle in the theory of linear transformations of spaces with indefinite metric,” Usp. Mat. Nauk, 5, No. 2, 180–190 (1950).

    Google Scholar 

  40. M. G. Krein, “On integral representation of a continuous Hermitian-indefinite function with a finite number of negative squares,” Dokl. AN SSSR, 125, No. 1, 31–34 (1959).

    MathSciNet  Google Scholar 

  41. V. I. Liberzon and V. S. Shul’man, “Operator-irreducible operator algebras in the Pontryagin space Π1,” Izv. AN SSSR, 35, No. 5, 1159–1170 (1971).

  42. V. I. Liberzon and V. S. Shul’man, “Nondegenerate operator algebras in spaces with indefinite metric,” Izv. AN SSSR, 37, No. 3, 533–538 (1973).

  43. S. N. Litvinov, “Bicyclic WJ*-algebras in the Pontryagin space of type Π1,” Funkts. Analiz i Ego Prilozh., 26, No. 3, 46–54 (1992).

    MathSciNet  Google Scholar 

  44. A. I. Loginov, “On commutative symmetric operator algebras in Pontryagin spaces,” Izv. AN SSSR, 33, No. 3, 559–569 (1969).

    Google Scholar 

  45. A. I. Loginov, “Complete commutative symmetric operator algebras in the Pontryagin space Π1,” Mat. Sb., 84, No. 4, 575–582 (1971).

    MathSciNet  Google Scholar 

  46. A. I. Loginov, “One generalization of the Markov–Kakutani fixed point theorem,” Funkts. Analiz i Ego Prilozh., 14, No. 2, 65–66 (1980).

    Google Scholar 

  47. A. I. Loginov and V. S. Shul’man, “Irreducible J-symmetric operator algebras in spaces with indefinite metric,” Dokl. AN SSSR, 240, No. 1, 21–23 (1978).

  48. A. I. Loginov and V. S. Shul’man, “Vector-valued duality for modules over Banach algebras,” Izv. AN SSSR, 57, No. 4, 3–35 (1993).

  49. V. I. Lomonosov, “On invariant subspaces of the family of operators commuting with a completely continuous one,” Funkts. Analiz i Ego Prilozh., 7, No. 3, 55–56 (1973).

    Google Scholar 

  50. V. I. Lomonosov, “On stability of nonnegative invariant subspaces,” In: New Results in Operator Theory and Its Applications: the Israel M. Glazman Memorial Volume, Birkh¨auser, Basel, pp. 186–189 (1997).

  51. S. Sh. Masharipova and V. I. Chilin, “Functional calculus in symmetric operator algebras in the Pontryagin space Π1,” Dokl. AN Uzbek. SSR, 14, 10–12 (1994).

    Google Scholar 

  52. S. Sh. Masharipova and V. I. Chilin, “Kaplansky’s density theorem for symmetric operator algebras in Π1,” Uzbek. Mat. Zh., 2, 68–75 (1996).

    Google Scholar 

  53. H. Nakazato, “Indefinite inner product spaces and derivations,” Math. Japonica, 35, 1119–1124 (1990).

    MathSciNet  Google Scholar 

  54. M. A. Naymark, “On permutation unitary operators in the space Πk,” Dokl AN SSSR, 149, 1261–1263 (1963).

    Google Scholar 

  55. M. A. Naymark, “On unitary representations of solvable groups in spaces with indefinite metric,” Izv. AN SSSR, 27, 1181–1185 (1963).

    MathSciNet  Google Scholar 

  56. M. A. Naymark, “Kommutative Algebren von Operatoren im Raume Π1,” Rev. Roumaine Math. Pures Appl., 9, No. 6, 499–528 (1964).

    MathSciNet  Google Scholar 

  57. M. A. Naymark, “On commutative algebras of operators in the space Πk,” Dokl AN SSSR, 161, No. 4, 767–770 (1965).

    MathSciNet  Google Scholar 

  58. M. A. Naymark, “On the structure of unitary representations of locally compact groups in Pontryagin spaces Π1,” Izv. AN SSSR, 29, No. 4, 689–770 (1965).

    Google Scholar 

  59. M. A. Naymark, “On the structure of unitary representations of locally compact groups and symmetric representations in Pontryagin spaces Πk,” Izv. AN SSSR, 30, No. 5, 1111–1132 (1966).

    Google Scholar 

  60. M. A. Naymark and R. S. Ismagilov, “Representations of groups and algebras in spaces with indefinite metric, Itogi Nauki i Tekhn. Ser. Mat. Mat. Analiz, 1968, 73–105 (1969).

    Google Scholar 

  61. M. Ostrovskii, V. S. Shulman, and L. Turowska, “Unitarizable representations and fixed points of groups of holomorphic transformations of operator balls,” J. Funct. Anal., 257, 2476–2496 (2009).

    Article  MathSciNet  Google Scholar 

  62. M. Ostrovskii, V. S. Shulman, and L. Turowska, “Fixed points of holomorphic transformations of operator balls,” Q. J. Math., 62, 173–187 (2011).

    Article  MathSciNet  Google Scholar 

  63. S. Ota, “Certain operator algebras induced by *-derivations in C*-algebras on an indefinite product space,” J. Funct. Anal., 30, 238–244 (1978).

    Article  MathSciNet  Google Scholar 

  64. R. S. Phillips, “Dissipative operators and hyperbolic systems of partial differential equations,” Matematika, 6, No. 4, 11–70 (1962).

    Google Scholar 

  65. R. S. Phillips, “The extension of dual subspaces invariant under an algebra,” Matematika, 8, No. 6, 81–108 (1964).

    Google Scholar 

  66. G. Pisier, Similarity Problems and Completely Bounded Maps. Includes the Solution to “The Halmos Problem”, Springer, Berlin (2001).

  67. L. S. Pontryagin, “Hermitian operators in spaces with indefinite metric,” Izv. AN SSSR, 8, 243–280 (1944).

    MathSciNet  Google Scholar 

  68. K. Sakai, “On J-unitary representations of amenable groups,” Rep. Fac. Sci. Kagoshima Univ., 26, 33–41 (1977).

    MathSciNet  Google Scholar 

  69. K. Sakai, “On indecomposable unitary representations of locally compact abelian groups in Πn-spaces,” Rep. Fac. Sci. Kagoshima Univ., 27, 1–20 (1978).

    MathSciNet  Google Scholar 

  70. K. Sakai, “On quasipositive definite functions and unitary representations of groups in Pontryagin spaces,” J. Math. Kyoto Univ., 19, 71–90 (1979).

    MathSciNet  Google Scholar 

  71. K. Sakai, “Some remarks on unitary representations of the Euclidean motion group in Πn spaces,” Sci. Rep. Kagoshima Univ., 29, 13–26 (1980).

    MathSciNet  Google Scholar 

  72. K. Sakai, “On indecomposable unitary representations of the 2-dimensional Euclidean motion group in fnite-dimensional indefinite inner product spaces,” Sci. Rep. Kagoshima Univ., 29, 27–51 (1980).

    Google Scholar 

  73. E. Samei and M. Wiersma, “Quasi-Hermitian locally compact groups are amenable,” Adv. Math., 359, 106897 (2020).

    Article  MathSciNet  Google Scholar 

  74. Z. Sasvari, “On bounded functions with a finite number of negative squares,” Monatsh. Math., 99, 223–234 (1985).

    Article  MathSciNet  Google Scholar 

  75. J. T. Schwartz, “Subdiagonalization of operators in Hilbert space with compact imaginary part,” Commun. Pure Appl. Math., 15, 159–172 (1962).

    Article  MathSciNet  Google Scholar 

  76. I. Shafrir, “Operators in hyperbolic spaces,” PhD Thesis, Technion — Israel Institute of Technology, Haifa, 1990.

  77. A. A. Shkalikov, “On existence of invariant subspaces for dissipative operators in spaces with indefinite metric,” Tr. MIAN, 248, 294–303 (2005).

    Google Scholar 

  78. V. A. Shtraus, “Functional representation of the algebra generated by a self-adjoint operator in a Pontryagin space,” Funkts. Analiz i Ego Prilozh., 20, No. 1, 91-92 (1986).

    Google Scholar 

  79. V. S. Shul’man, “Banach symmetric operator algebras in a space of type Π1,” Mat. Sb., 89, No. 2, 264–279 (1972).

  80. V. S. Shul’man, “On representations of C*-algebras in spaces with indefinite metric,” Mat. Zametki, 22, 583–592 (1977).

  81. V. S. Shul’man, “One fixed point theorem,” Funkts. Analiz i Ego Prilozh., 13, No. 1, 88-89 (1979).

  82. V. S. Shul’man, “On fixed points of linear-fractional mappings,” Funkts. Analiz i Ego Prilozh., 14, No. 2, 93–94 (1980).

  83. V. S. Shul’man, “On modules over operator algebras,” Funkts. Analiz i Ego Prilozh., 17, No. 2, 94–95 (1983).

  84. V. S. Shul’man, “Factorization of completely positive cocycles and the GNS-construction of representations in Pontryagin spaces,” Funkts. Analiz i Ego Prilozh., 31, No. 3, 91–94 (1997).

  85. V. S. Shulman, “Quasivectors and Tomita–Takesaki theory for operator algebras on P1-spaces,” Rev. Math. Phys., 9, No. 6, 749–783 (1997).

    Article  MathSciNet  Google Scholar 

  86. S. L. Sobolev, “On the motion of a symmetrical top with a cavity filled with fluid,” Zhurn. Prikl. Mekh. i Tekhn. Fiz., No. 1, 55–60 (1949).

  87. V. Strauss, “On the weakly closed algebra generated by a unitary operator in a Pontryagin space,” Oper. Matrices, 12, No. 3, 837–853 (2018).

    Article  MathSciNet  Google Scholar 

  88. V. Strauss, “On a functional calculus for unitary operators in Pontryagin spaces,” Oper. Matrices, 14, No. 3, 971–999 (2020).

    Article  MathSciNet  Google Scholar 

  89. W. Takahashi, “A convexity in metric spaces and nonexpansive mappings. I,” Kodai Math. Sem. Rep., 22, 142–149 (1970).

    Article  MathSciNet  Google Scholar 

  90. Y. Tong, “Commutative J-von Neumann algebras on Pontryagin spaces,” Chinese Ann. Math. Ser. A, 14, 429–436 (1993).

    MathSciNet  Google Scholar 

  91. Y. Tong, “Two density theorems for sets of operators on Pontryagin spaces,” Acta Math. Sinica, 37, No. 1, 1–11 (1994).

    MathSciNet  Google Scholar 

  92. Y. Tong, “Uniformly closed symmetric operator algebras on Pontryagin spaces,” Chinese Ann. Math. Ser. A, 15, 603–611 (1994).

    MathSciNet  Google Scholar 

  93. Y. Tong, “A density theorem on the operator algebras in Pontryagin spaces,” J. Math. Anal. Appl., 268, 143–156 (2002).

    Article  MathSciNet  Google Scholar 

  94. A. Van Daele, “A framework to study commutational problems,” Bull. Soc. Math. France, 106, 289–309 (1978).

    Article  MathSciNet  Google Scholar 

  95. H. Yang, “On the symmetry of ideal in operator algebras on Pontryagin spaces,” Acta Math. Sinica, 47, 915–920 (2004).

    Google Scholar 

  96. H. Yang, “Structure of ideals of operator algbras on Pontryagin spaces,” Chinese Ann. Math. Ser. A, 28, No. 1, 103–110 (2007).

    MathSciNet  Google Scholar 

  97. H. Yang, “The operator algebras of class I on the Pontryagin spaces,” J. Systems Sci. Math. Sci., 33, No. 2, 993–1006 (2013).

    MathSciNet  Google Scholar 

  98. H. Yang, “Classification and general forms of operator algebras on Pontryagin space,” Acta Math. Sinica, 58, No. 3, 401–408 (2015).

    MathSciNet  Google Scholar 

  99. H. Yang, Y. Fang, and S. Liu, “General form of operator algebras on Pontryagin spaces with neutral invariant subspaces,” Linear Algebra Appl., 425, 184–209 (2007).

    Article  MathSciNet  Google Scholar 

  100. H. Yang, Y. Fang, and S. Liu, “Invariant subspaces of JC*-algebras on Π1-spaces,” J. Systems Sci. Math. Sci., 28, No. 10, 1268–1274 (2008).

    MathSciNet  Google Scholar 

  101. D. P. Zhelobenko, “Description of one class of representations of the Lorentz group,” Dokl. AN SSSR, 121, No. 4, 586–590 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kissin.

Additional information

To the blessed memory of Nikolai Dmitrievich Kopachevskii, a remarkable Mathematician and Human.

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 67, No. 2, Dedicated to the memory of Professor N. D. Kopachevsky, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kissin, E.V., Shulman, V.S. On Representations of Groups and Algebras in Spaces with Indefinite Metric. J Math Sci 278, 91–107 (2024). https://doi.org/10.1007/s10958-024-06907-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06907-6

Keywords

Navigation