Skip to main content
Log in

Investigation of Integro-Differential Equations by Methods of Spectral Theory

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper provides a survey of results devoted to the study of integro-differential equations with unbounded operator coefficients in a Hilbert space. These equations are operator models of integro-differential partial differential equations arising in numerous applications: in the theory of viscoelasticity, in the theory of heat propagation in media with memory (Gurtin–Pipkin equations), and in averaging theory. The most interesting and profound results of the survey are devoted to the spectral analysis of operator functions that are symbols of the integro-differential equations under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Amendola, M. Fabrizio, and J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications, Springer, New York–Dordrecht–Heidelberg–London (2012).

  2. O. A. Andronova and N. D. Kopachevsky, “On linear problems with surface energy dissipation,” Sovrem. Mat. Fundam. Napravl., 29, 11–28 (2008).

    Google Scholar 

  3. T. Ya. Azizov, N. D. Kopachevsky, and L. D. Orlova, “Evolution and spectral problems generated by the problem of small motions of a viscoelastic fluid,” Tr. SPb. Mat. Ob-va, 6, 5–33 (1988).

    Google Scholar 

  4. T. Ya. Azizov, N. D. Kopachevsky, and L. D. Orlova, “Operator approach to the study of the Oldroyd hydrodynamic model,” Mat. Zametki, 65, No. 6, 924–928 (1999).

    MathSciNet  Google Scholar 

  5. M. A. Biot, “Generalized theory of acoustic propagation in porous dissipative media,” J. Acoust. Soc. Am., 34, 1254–1264 (1962).

    Article  MathSciNet  Google Scholar 

  6. C. M. Dafermos, “Asymptotic stability in viscoelasticity,” Arch. Ration. Mech. Anal., 37, 297–308 (1970).

    Article  MathSciNet  Google Scholar 

  7. A. V. Davydov and Y. A. Tikhonov, “Study of Kelvin–Voigt models arising in viscoelasticity,” Differ. Equ., 54, No. 12, 1620–1635 (2018).

    Article  MathSciNet  Google Scholar 

  8. W. Desch, R. K. Miller, “Exponential stabilization of Volterra integro-differential equations in Hilbert space,” J. Differ. Equ., 70, 366–389 (1987).

    Article  MathSciNet  Google Scholar 

  9. P. L. Devis, “Hyperbolic integro-differential equations,” Proc. Am. Math. Soc., 47, 155–160 (1975).

    Article  Google Scholar 

  10. P. L. Devis, “On the hyperbolicity of the equations of the linear theory of heat conduction for materials with memory,” SIAM J. Appl. Math., 30, 75–80 (1976).

    Article  MathSciNet  Google Scholar 

  11. G. Di Blasio, “Parabolic Volterra equations of convolution type,” J. Integral Equ. Appl., 6, 479–508 (1994).

    Article  MathSciNet  Google Scholar 

  12. G. Di Blasio, K. Kunisch, and E. Sinestrari, “L2-regularity for parabolic partial integro-differential equations with delays in the highest order derivatives,” J. Math. Anal. Appl., 102, 38–57 (1984).

    Article  MathSciNet  Google Scholar 

  13. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York–Berlin–Heidelberg (1999).

  14. A. Eremenko and S. Ivanov, “Spectra of the Gurtin–Pipkin type equations,” SIAM J. Math. Anal., 43, 2296–2306 (2011).

    Article  MathSciNet  Google Scholar 

  15. M. E. Gurtin and A. C. Pipkin, “General theory of heat conduction with finite wave speed,” Arch. Ration. Mech. Anal., 31, 113–126 (1968).

    Article  MathSciNet  Google Scholar 

  16. A. A. Il’yushin and B. E. Pobedrya, Fundamentals of the Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).

  17. R. S. Ismagilov, N. A. Rautian, and V. V. Vlasov, “Examples of very unstable linear partial functional differential equations,” arXiv, 1402.4107v1.

  18. S. A. Ivanov, “Wave type” spectrum of the Gurtin–Pipkin equation of the second order,” arXiv, 1002.2831.

  19. S. Ivanov and L. Pandolfi, “Heat equations with memory: lack of controllability to the rest,” J. Math. Anal. Appl., 355, 1–11 (2009).

    Article  MathSciNet  Google Scholar 

  20. S. A. Ivanov and T. L. Sheronova, “Spectrum of the heat equation with memory,” arXiv, 0912.1818v1.

  21. T. Kato, Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  22. N. D. Kopachevsky, “Cauchy problem for a linear integro-differential equation in a Hilbert space,” Uch. Zap. Tavr. Nats. Un-ta Im. V. I. Vernadskogo, 16, 139–152 (2001).

  23. N. D. Kopachevsky, Volterra Integro-Differential Equations in Hilbert Space. Special Course of Lectures [in Russian], Bondarenko, Simferopol’ (2012).

  24. N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Non-Self-Adjoint Problems for Viscous Fluids, Birkhäuser, Basel–Boston–Berlin (2003).

  25. N. D. Kopachevsky, S. G. Kreyn, and Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics. Evolution and Spectral Problems [in Russian], Nauka, Moscow (1989).

  26. N. D. Kopachevsky, L. D. Orlova, and Yu. S. Pashkova, “Differential-operator and integrodifferential equations in the problem of small oscillations of hydrodynamic systems,” Uch. Zap. Simf. Gos. Un-ta, 41, No. 2, 96–108 (1995).

    Google Scholar 

  27. N. D. Kopachevsky and E. V. Semkina, “On second-order Volterra integro-differential equations unresolved with respect to the higher derivative,” Uch. Zap. Tavr. Nats. Un-ta Im. V. I. Vernadskogo. Ser. Fiz.-Mat. Nauki, 26, No. 1, 52–79 (2013).

  28. N. D. Kopachevsky and E. V. Semkina, “Linear Volterra integro-differential second-order equations unresolved with respect to the highest derivative,” Eurasian Math. J., 4, No. 4, 64–87 (2013).

    MathSciNet  Google Scholar 

  29. S. G. Kreyn, Linear Differential Equations in Banach Space [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  30. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary-Value Problems and Their Applications [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  31. A. V. Lykov, “Some problematic issues of the theory of heat and mass transfer,” In: Problems of Heat and Mass Transfer, Nauka i tekhnika, Minsk, pp. 9–82 (1976).

  32. R. K. Miller, “Volterra integral equations in a Banach space,” Funkcialaj Ekvac., 18, 163–194 (1975).

    MathSciNet  Google Scholar 

  33. R. K. Miller, “An integrodifferencial equation for rigid heat conductors with memory,” J. Math. Anal., 66, 313–332 (1978).

    Article  MathSciNet  Google Scholar 

  34. R. K. Miller and R. L. Wheeler, “Well-posedness and stability of linear Volterra integro-differential equations in abstract spaces,” Funkcialaj Ekvac., 21, 279–305 (1978).

    MathSciNet  Google Scholar 

  35. A. I. Miloslavskiy, “On the stability of some classes of evolution equations,” Sib. Mat. Zh., 26, 118–132 (1985).

    Google Scholar 

  36. A. I. Miloslavskiy, “Spectral properties of an operator beam arising in viscoelasticity,” Ukr. NIINTI, Khar’kov, 13.07.87, No. 1229-UK87, 53 (1987).

  37. A. I. Miloslavskiy, “On the spectrum of instability of an operator beam,” Mat. Zametki, 49, No. 4, 88–94 (1991).

    Google Scholar 

  38. J. E. Munoz Rivera, M. G. Naso, and F. M. Vegni, “Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory,” J. Math. Anal. Appl., 286, 692–704 (2003).

  39. A. D. Myshkis and V. V. Vlasov, “On an analogy between the classifications of functional differential equations and partial differential equations,” Funct. Differ. Equ., 16, No. 3, 545–560 (2009).

    MathSciNet  Google Scholar 

  40. L. Pandolfi, “The controllability of the Gurtin–Pipkin equations: a cosine operator approach,” Appl. Math. Optim., 52, 143–165 (2005).

    Article  MathSciNet  Google Scholar 

  41. A. Pazy, Semigroups of Linear Operators and Applications of Partial Differential Equations, Springer, New York etc. (1983).

    Book  Google Scholar 

  42. R. Perez Ortiz and V. V. Vlasov, “Correct solvability of Volterra integro-differential equations in Hilbert space,” Electron. J. Qual. Theory Differ Equ., 31, 1–17 (2016).

  43. J. Prüss, “On linear Volterra equations of parabolic type in Banach spaces,” Trans. Am. Math. Soc., 301, No. 2, 691–721 (1987).

    Article  MathSciNet  Google Scholar 

  44. J. Prüss, “Bounded solutions of Volterra equations,” SIAM J. Math. Anal., 19, No. 1, 133–149 (1988).

    Article  MathSciNet  Google Scholar 

  45. J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel–Baston–Berlin (1993).

  46. Yu. N. Rabotnov, Elements of Hereditary Solid Body Mechanics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  47. G. V. Radzievskiy, “Asymptotics of the distribution of characteristic numbers of operator functions analytic in an angle,” Mat. Sb., 112, No. 3, 396–420 (1980).

    MathSciNet  Google Scholar 

  48. N. A. Rautian, “On the boundedness of a class of integral operators of fractional type,” Mat. Sb., 200, No. 12, 81–106 (2009).

    Google Scholar 

  49. N. A. Rautian, “On representation of solutions of integro-differential equations with unbounded operator coefficients in a Hilbert space,” Proc. Int. Conf. Qualitative Theory of Differential Equations and Applications, MESI, Moscow, pp. 116–134 (2011).

    Google Scholar 

  50. N. A. Rautian, “On the structure and properties of solutions of integro-differential equations arising in thermophysics and acoustics,” Mat. Zametki, 90, No. 3, 474–477 (2011).

    MathSciNet  Google Scholar 

  51. N. A. Rautian, “Semigroups generated by Volterra integro-differential equations,” Diff. Uravn., 56, No. 9, 1226–1244 (2020).

    MathSciNet  Google Scholar 

  52. N. A. Rautian, “Well-posedness of Volterra integro-differential equations with fractional exponential kernels,” In: Differential and Difference Equations with Applications, Springer, Cham, pp. 517–533 (2020).

  53. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  54. G. V. Sandrakov, “Multiphase averaged diffusion models for problems with multiple parameters,” Izv. RAN. Ser. Mat., 71, No. 6, 119–72 (2007).

    Google Scholar 

  55. J. Shapiro, Composition Operators and Classical Function Theory, Springer, New York (1993).

    Book  Google Scholar 

  56. A. A. Shkalikov, “Strongly damped operator pencils and the solvability of the corresponding operator-differential equations,” Mat. Sb., 177, No. 1, 96–118 (1988).

    MathSciNet  Google Scholar 

  57. A. L. Skubachevskii, “Elliptic problems with nonlocal conditions near the boundary,” Mat. Sb., 129, No. 2, 279–302 (1986).

    MathSciNet  Google Scholar 

  58. A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkh¨auser, Basel (1997).

  59. A. L. Skubachevskii, “On a class of functional differential operators satisfying the Kato hypothesis,” Algebra i Analiz, 30, No. 2, 249–273 (2018).

    Google Scholar 

  60. V. V. Vlasov, A. A. Gavrikov, S. A. Ivanov, and D. Yu. Knyaz’kov, V. A. Samarin, A. S. Shamaev, “Spectral properties of combined media,” J. Math. Sci. (N.Y.), 164, No. 6, 948–963 (2010).

  61. V. V. Vlasov, D. A. Medvedev, and N. A. Rautian, Functional Differential Equations in Sobolev Spaces and Their Spectral Analysis [in Russian], MGU, Moscow (2011).

    Google Scholar 

  62. V. V. Vlasov and R. Perez Ortiz, “Spectral analysis of integro-differential equations arising in the theory of viscoelasticity and thermophysics,” Mat. Zametki, 98, No. 4, 630–634 (2015).

  63. V. V. Vlasov, R. Perez Ortiz, and N. A. Rautian, “Investigation of Volterra integro-differential equations with kernels depending on a parameter,” Diff. Uravn., 54, No. 3, 369–386 (2018).

  64. V. V. Vlasov and N. A. Rautian, “Correct solvability and spectral analysis of abstract hyperbolic integro-differential equations,” Tr. Sem. Im. I. G. Petrovskogo, 28, 75–113 (2011).

    Google Scholar 

  65. V. V. Vlasov and N. A. Rautian, “Study of integro-differential equations arising in the theory of viscoelasticity,” Izv. Vuzov. Ser. Mat., 6, 56–60 (2012).

    Google Scholar 

  66. V. V. Vlasov and N. A. Rautian, “Spectral analysis and representation of solutions of abstract integro-differential equations,” Dokl. RAN, 454, No. 2, 141–144 (2014).

    Google Scholar 

  67. V. V. Vlasov and N. A. Rautian, “Properties of solutions of integro-differential equations arising in the theory of heat and mass transfer,” Tr. Mosk. Mat. Ob-va, 75, No. 2, 219–243 (2014).

    Google Scholar 

  68. V. V. Vlasov and N. A. Rautian, “Spectral analysis and representations of solutions of abstract integro-differential equations in Hilbert space,” In: Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, IWOTA 11, Sevilla, Spain, July 3–9, 2011, Birkhäuser/Springer, Basel, pp. 517–535 (2014).

  69. V. V. Vlasov and N. A. Rautian, “Well-posedness and spectral analysis of integro-differential equations arising in viscoelasticity theory,” Sovrem. Mat. Fundam. Napravl., 58, 22–42 (2015).

    Google Scholar 

  70. V. V. Vlasov and N. A. Rautian, Spectral Analysis of Functional Differential Equations [in Russian], MAKS Press, Moscow (2016).

    Google Scholar 

  71. V. V. Vlasov and N. A. Rautian, “Correct solvability of Volterra integro-differential equations in a Hilbert space,” Diff. Uravn., 52, No. 9, 1168–1177 (2016).

    Google Scholar 

  72. V. V. Vlasov and N. A. Rautian, “Investigation of operator models arising in viscoelasticity theory,” Sovrem. Mat. Fundam. Napravl., 64, No. 1, 60–73 (2018).

    Google Scholar 

  73. V. V. Vlasov and N. A. Rautian, “Spectral analysis of integro-differential equations in Hilbert spaces,” J. Math. Sci. (N.Y.), 239, No. 6, 771–787 (2019).

  74. V. V. Vlasov and N. A. Rautian, “Correct solvability and representation of solutions of integro-differential equations arising in the theory of viscoelasticity,” Diff. Uravn., 55, No. 4, 574–587 (2019).

    Google Scholar 

  75. V. V. Vlasov and N. A. Rautian, “Spectral analysis and representation of solutions of integro-differential equations with fractional-exponential kernels,” Tr. Mosk. Mat. Ob-va, 80, No. 2, 197–220 (2019).

    MathSciNet  Google Scholar 

  76. V. V. Vlasov and N. A. Rautian, “A study of operator models arising in problems of hereditary mechanics,” J. Math. Sci. (N.Y.), 244, No. 2, 170–182 (2020).

  77. V. V. Vlasov and N. A. Rautian, “Properties of semigroups generated by Volterra integro-differential equations,” Diff. Uravn., 56, No. 8, 1122–1126 (2020).

    MathSciNet  Google Scholar 

  78. V. V. Vlasov and N. A. Rautian, “Investigation of Volterra integro-differential equations with kernels representable by Stieltjes integrals,” Diff. Uravn., to be published (2021).

  79. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, “Solvability and spectral analysis of integro-differential equations arising in thermophysics and acoustics,” Dokl. RAN, 434, No. 1, 12–15 (2010).

    Google Scholar 

  80. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, “Spectral analysis and correct solvability of abstract integro-differential equations arising in thermophysics and acoustics,” Sovrem. Mat. Fundam. Napravl., 39, 36–65 (2011).

    Google Scholar 

  81. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, “Analysis of operator models arising in problems of hereditary mechanics,” Sovrem. Mat. Fundam. Napravl., 45, 43–61 (2012).

    Google Scholar 

  82. V. V. Vlasov and J. Wu, “Solvability and spectral analysis of abstract hyperbolic equations with delay,” Funct. Differ. Equ., 16, No. 4, 751–768 (2009).

    MathSciNet  Google Scholar 

  83. J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York (1996).

    Book  Google Scholar 

  84. D. A. Zakora, “Oldroyd model for compressible fluids,” Sovrem. Mat. Fundam. Napravl., 61, 41–66 (2016).

    Google Scholar 

  85. D. A. Zakora and N. D. Kopachevsky, “On a spectral problem associated with a second-order integro-differential equation,” Uch. Zap. Tavr. Nats. Un-ta Im. V. I. Vernadskogo, No. 2, 2–18 (2004).

  86. V. V. Zhikov, “An extension and application of the two-scale convergence method,” Mat. Sb., 191 No. 7, 31–72 (2000).

    MathSciNet  Google Scholar 

  87. V. V. Zhikov, “On two-scale convergence,” Tr. Sem. Im. I. G. Petrovskogo, 23, 149–187 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vlasov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 67, No. 2, Dedicated to the memory of Professor N. D. Kopachevsky, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, V.V., Rautian, N.A. Investigation of Integro-Differential Equations by Methods of Spectral Theory. J Math Sci 278, 55–81 (2024). https://doi.org/10.1007/s10958-024-06905-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-024-06905-8

Keywords

Navigation