Skip to main content
Log in

DIDO’S PROBLEM AND BEYOND

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We overview the main ideas and techniques of the functional-analytical approach to some extremal problems of convex geometry that stem from the Queen Dido problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

The author has no relevant financial or non-financial interests to disclose.

References

  1. Manin Y.I., A Course of Mathematical Logic for Mathematicians, New York: Springer, 2010.

    Book  Google Scholar 

  2. Kelvin B., “Isoperimetric problems,” In: Kelvin B. and Thompson Nature series, vol. II, Ch. Isoperimetrical Problems, pp. 571-592, Macmillan and Co., London, 1891

  3. Kutateladze S. S. and Rubinov A. M.“The Minkowski duality and its applications,” Russian Math. Surveys, 27:3, 137–191 (1972).

  4. Reshetnyak Yu. G. On the Length and Swerve of a Curve and the Area of a Surface, (Ph. D. Thesis, unpublished), Leningrad State University, Leningrad, 1954.

  5. Loomis L. “Unique direct integral decomposition on convex sets,” Amer. Math. J., 84:3, 509–526 (1962).

    Article  MathSciNet  Google Scholar 

  6. Cartier P., Fell J. M., and Meyer P. A.“Comparaison des mesures poertées par un ensemble convexe compact,” Bull. Soc. Math. France, 64, 435–445 (1964).

  7. Kutateladze S. S. “Positive Minkowski-linear functionals over convex surfaces,” Soviet Math. Dokl. 11:3, 767–769 (1970).

    Google Scholar 

  8. Kutateladze S. S. “Choquet boundaries in K-spaces,” Russian Math. Surveys, 30:4, 115–155 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  9. Alexandrov A. D. Selected Works. Part 1: Selected Scientific Papers, Gordon and Breach, London etc. (1996).,

  10. Firey W. “Blaschke sums of convex bodies and mixed bodies,” in: it Proc. of the Colloquium on Convexity, 1965,l Kobenhavns Univ. Mat. Inst., Copenhagen, (1967), 94–101.

  11. Schneider R. Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, Cambridge (1993).

    Book  Google Scholar 

  12. Gardner R. J. “The Brunn–Minkowski Inequality,” Bull. Amer. Math. Soc., 39:3, 355–405 (2002).

    Article  MathSciNet  Google Scholar 

  13. Urysohn P. S. “Interdependence between the integral breadth and volume of a convex body,” Mat. Sb., 31:3, 477–486 (1924).

    MathSciNet  Google Scholar 

  14. Rosales C. “Isoperimetric regions in rotationally symmetric convex bodies,” Indiana Univ. Math.  J., 51:5, 1201–1214 (2003).

    Article  MathSciNet  Google Scholar 

  15. Ritore M. and Rosales C. “Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones,” Trans. Amer. Math. Soc., 356:11, 4601–4622 (2004).

    Article  MathSciNet  Google Scholar 

  16. Zălinesku C. Convex Analysis in General Vector Spaces, World Scientific, New Jersey, etc. (2002).

    Book  Google Scholar 

  17. Göpfert A., Tammer Ch., Riahi H., and Zălinesku C. Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York (2003).

    Google Scholar 

  18. Jahn J. Vector Optimization: Theory, Applications, and Extensions,Berlin, Springer-Verlag (2004).

    Book  Google Scholar 

  19. Kusraev A. G. and Kutateladze S. S. Subdifferential Calculus: Theory and Applications, Nauka, Moscow (2007).

    Google Scholar 

  20. Isenberg C. The Science of Soap Films and Soap Bubbles, Dover Publications, New York (1992).

    Google Scholar 

  21. Lovett D. Demonstrating Science with Soap Films, IOP Publishing Ltd., Bristol and Philadelphia (1994).

    Google Scholar 

  22. Pogorelov A. V. “Imbedding a ‘soap bubble’ into a tetrahedron,” Math. Notes, 56:2, 824–826 (1994).

    Article  MathSciNet  Google Scholar 

  23. Kutateladze S. S. “Multiobjective problems of convex geometry,” Sib. Math. J., 50:5, 887–897 (2010).

    Article  Google Scholar 

  24. Kutateladze S. S. “Multiple criteria problems over Minkowski balls,” J. Appl. Ind. Math., 7:2, 208–214 (2013).

    Article  Google Scholar 

Download references

Funding

The research was supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement 075–02–2021–1844) and carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kutateladze.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

To Anatoly Kusraev with great respect.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutateladze, S.S. DIDO’S PROBLEM AND BEYOND. J Math Sci 271, 778–785 (2023). https://doi.org/10.1007/s10958-023-06899-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06899-9

Keywords

Navigation