Skip to main content
Log in

On Geodesic Definiteness by Similarity Points

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present some results obtained in the theory of geodesic mappings of surfaces. It is well known that a mapping that is both conformal and geodesic is homothetic. Based on this property, we obtain new results on the definiteness of surfaces with respect to geodesic mappings, which generalize results obtained by V. T. Fomenko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Afwat and A. Švec, “Global differential geometry of hypersurfaces,” Rozpr. Česk. Akad. Věd, Řada Mat. Přír. Věd., 88, No. 7, 75 (1978).

  2. V. E. Berezovskii, N. I. Guseva, and J. Mikeš, “On a particular case of first-type almost geodesic mappings of affinely connected spaces that preserve a certain tensor,” Mat. Zametki, 98, No. 3, 463–466 (2015).

    Article  MathSciNet  Google Scholar 

  3. V. E. Berezovskii, I. Hinterleitner, N. I. Guseva, and J. Mikeš, “Conformal mappings of Riemannian spaces onto Ricci symmetric spaces,” Mat. Zametki, 103, No. 2, 303–306 (2018).

    Article  MathSciNet  Google Scholar 

  4. H. Chudá and J. Mikeš, “First quadratic integral of geodesics with certain initial conditions,” APLIMAT, 85–88 (2007).

  5. H. Chudá and J. Mikeš, “Conformally geodesic mappings satisfying a certain initial condition,” Arch. Math. (Brno), 47, 389–394 (2011).

    MathSciNet  Google Scholar 

  6. M. Ćirić, M. Zlatanović, M. Stanković, and Lj. Velimirović, “On geodesic mappings of equidistant generalized Riemannian spaces,” Appl. Math. Comput., 218, 6648–6655 (2012).

  7. U. Dini, “On a problem in the general theory of the geographical representations of a surface on another,” Anal. Mat., 3, 269–294 (1869).

    Google Scholar 

  8. L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press (1926).

  9. L. E. Evtushik, I. Hinterleitner, N. I. Guseva, and J. Mikeš, “Conformal mappings onto Einstein spaces,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 10, 8–13 (2016).

  10. V. T. Fomenko, “On the unique determination of closed surfaces with respect to geodesic mappings,” Dokl. Ross. Akad. Nauk, 407, No. 4, 453–456 (2006).

    MathSciNet  Google Scholar 

  11. S. Formella and J. Mikeš, “Geodesic mappings of Einstein spaces,” Ann. Sci. Stet., 9, 31–40 (1994).

    Google Scholar 

  12. G. Hall, “Projective structure in space-times,” AMS/IP Stud. Adv. Math., 49, 71–79 (2011).

    Article  MathSciNet  Google Scholar 

  13. I. Hinterleitner, “Conformally-projective harmonic diffeomorphisms of equidistant manifolds,” Publ. RSME, 11, 298–303 (2007).

    MathSciNet  Google Scholar 

  14. I. Hinterleitner, “Special mappings of equidistant spaces,” J. Appl. Math., 2, 31–36 (2008).

    Google Scholar 

  15. I. Hinterleitner, “On global geodesic mappings of ellipsoids,” AIP Conf. Proc., 1460, 180–184 (2012).

    Article  Google Scholar 

  16. I. Hinterleitner, “Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature,” Publ. Inst. Math., 94 (108), 125–130 (2013).

    Article  MathSciNet  Google Scholar 

  17. I. Hinterleitner and J. Mikeš, “On the equations of conformally-projective harmonic mappings,” AIP Conf. Proc., 956, 141–148 (2007).

    Article  MathSciNet  Google Scholar 

  18. I. Hinterleitner and J. Mikeš, “Projective equivalence and spaces with equi-affine connection,” J. Math. Sci., 177, 546–550 (2011).

    Article  MathSciNet  Google Scholar 

  19. I. Hinterleitner and J. Mikeš, “Fundamental equations of geodesic mappings and their generalizations,” J. Math. Sci., 174, 537–554 (2011).

    Article  Google Scholar 

  20. I. Hinterleitner and J. Mikeš, “Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability,” Miskolc Math. Notes, 14, 89–96 (2013).

    Article  MathSciNet  Google Scholar 

  21. I. Hinterleitner and J. Mikeš, “Geodesic mappings and Einstein spaces,” in: Geometric Methods in Physics, Birkhäuser–Springer, Basel (2013), pp. 331–335.

  22. I. Hinterleitner and J. Mikeš, “Geodesic mappings and differentiability of metrics, affine and projective connections,” Filomat, 29, 1245–1249 (2015).

    Article  MathSciNet  Google Scholar 

  23. I. Hinterleitner and J. Mikeš, “Geodesic mappings onto Riemannian manifolds and differentiability,” in: Geometry, Integrability and Quantization XVIII, Bulgar. Acad. Sci., Sofia (2017), pp. 183–190.

  24. V. F. Kagan, Foundations of the Theory of Surfaces. Vols. 1, 2, OGIZ, Moscow–Leningrad (1947–1948).

  25. I. Kuzmina and J. Mikeš, “On pseudoconformal models of fibrations determined by the algebra of antiquaternions and projectivization of them,” Ann. Math. Inform., 42, 57–64 (2013).

    MathSciNet  Google Scholar 

  26. J. L. Lagrange, “Sur la construction des cartes géographiques,” Nouv. M´em. Acad. Roy. Sci. Belles-Lettres de Berlin, No. 4, 637–692 (1779).

  27. T. Levi-Civita, “Sulle trasformazioni dello equazioni dinamiche,” Ann. Mat. Milano, 24, 255–300 (1896).

    Google Scholar 

  28. J. Mikeš, “On the existence of n-dimensional compact spaces admitting nontrivial global geodesic mappings,” Dokl. Akad. Nauk SSSR, 305, 534–536 (1989).

    Google Scholar 

  29. J. Mikeš, “On existence of nontrivial global geodesic mappings on n-dimensional compact surfaces of revolution,” in: Proc. Conf. “Differential Geometry and Its Applications” (Brno, 1989), World Scientific (1990), pp. 129–137.

  30. J. Mikeš, “Global geodesic mappings and their generalizations for compact Riemannian spaces,” Silesian Univ. Math. Publ., 1 (1993), pp. 143–149.

    MathSciNet  Google Scholar 

  31. J. Mikeš, “Geodesic mappings of affine-connected and Riemannian spaces,” J. Math. Sci., 78 (1996), pp. 311–333.

    Article  MathSciNet  Google Scholar 

  32. J. Mikeš et al., Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc (2015).

    Google Scholar 

  33. J. Mikeš and V. Berezovski, “Geodesic mappings of affine-connected spaces onto Riemannian spaces,” Colloq. Math. Soc. J. Bolyai., 56 (1992), pp. 491–494.

    MathSciNet  Google Scholar 

  34. J. Mikeš, V. Berezovski, E. Stepanova, and H. Chud´a, “Geodesic mappings and their generalizations,” J. Math. Sci., 217, No. 5 (2016), pp. 607–623.

  35. J. Mikeš and H. Chudá, “On geodesic mappings with certain initial conditions,” Acta Math. Acad. Paedagog. Nyházi., 26 (2010), pp. 337–341.

    MathSciNet  Google Scholar 

  36. J. Mikeš, H. Chudá, and I. Hinterleitner, “Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition,” Int. J. Geom. Meth. Mod. Phys., 11, No. 5 (2014).

  37. J. Mikeš and I. Hinterleitner, “On a variational property of geodesic curves in Riemannian and Finslerian spaces,” Vestn. Tver. Univ. Ser. Prikl. Mat., 8 (2008), pp. 59–63.

    Google Scholar 

  38. J. Mikeš, A. Vanžurová, and I. Hinterleitner, Geodesic Mappings and Some Generalizations, Palacky Univ. Press, Olomouc (2009).

    Google Scholar 

  39. M. Najdanović, M. Zlatanović, and I. Hinterleitner, “Conformal and geodesic mappings of generalized equidistant spaces,” Publ. Inst. Math. Beograd, 98 (112) (2015), pp. 71–84.

    Article  MathSciNet  Google Scholar 

  40. A. P. Norden, Theory of Surfaces [in Russian], GITTL, Moscow (1956).

    Google Scholar 

  41. A. Z. Petrov, New Methods in General Relativity [in Russian], Nauka, Moscow (1966).

  42. L. Rýparová and J. Mikeš, “On global geodesic mappings of quadrics of revoution,” in: Proc. 16th Conf. APLIMAT 2017 (2017), pp. 1342–1348.

  43. L. Rýparová and J. Mikeš, “On geodesic bifurcations,” in: Geometry, Integrability and Quantization XVIII, Bulgar. Acad. Sci., Sofia (2017), pp. 217–224.

  44. L. Rýparov´a and J. Mikeš, “Bifurcation of closed geodesics,” in: Geometry, Integrability and Quantization XIX, Bulgar. Acad. Sci., Sofia (2018), pp. 188–192.

  45. L. Rýparová and J. Mikeš, “On geodesic bifurcations of product spaces,” J. Math. Sci., 239, No. 1 (2019), pp. 86–91.

    Article  Google Scholar 

  46. P. A. Shirokov, Selected Works in Geometry [in Russian], Izd-vo Kazan. Univ., Kazan (1966).

  47. N. S. Sinyukov, “On an invariant transform of Riemannian spaces with common geodesic curves,” Dokl. Akad. Nauk SSSR, 137, No. 6 (1961), pp. 1312–1314.

    MathSciNet  Google Scholar 

  48. N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979).

  49. E. N. Sinyukova, “On geodesic mappings of special Riemannian spaces,” Mat. Zametki, 30, No. 6 (1981), pp. 889–894.

    MathSciNet  Google Scholar 

  50. M. Stanković, S. Mincić, Lj. Velimirović, and M. Zlatanović, “On equitorsion geodesic mappings of general affine connection spaces,” Rend. Semin. Mat. Univ. Padova, 124 (2010), pp. 77–90.

  51. S. E. Stepanov, “On the global theory of projective mappings,” Mat. Zametki, 58, No. 1 (1995), pp. 111–118.

    MathSciNet  Google Scholar 

  52. S. Stepanov, I. Shandra, and J. Mikeš, “Harmonic and projective diffeomorphisms,” J. Math. Sci., 207 (2015), pp. 658–668.

    Article  MathSciNet  Google Scholar 

  53. K. Yano and S. Bochner, Curvature and Betti Numbers, Princeton Univ. Press (1953).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hinterleitner.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 182, Proceedings of the International Conference “Classical and Modern Geometry” Dedicated to the 100th Anniversary of Professor V. T. Bazylev. Moscow, April 22-25, 2019. Part 4, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinterleitner, I., Guseva, N.I. & Mikeš, J. On Geodesic Definiteness by Similarity Points. J Math Sci 277, 727–735 (2023). https://doi.org/10.1007/s10958-023-06879-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06879-z

Keywords and phrases

AMS Subject Classification

Navigation