Skip to main content
Log in

Existence of Solutions of Linear Set-Valued Integral Equations and Their Properties

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider two linear set-valued integral equations, establish the conditions for the existence of their solutions, and determine, in the analytic form, the shape of their sections at any time. The results are illustrated by model examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. de Blasi and F. Iervolino, “Equazioni differentiali con soluzioni a valore compatto convesso,” Boll. Unione Mat. Ital., 2, No. 4-5, 491–501 (1969).

    Google Scholar 

  2. V. A. Plotnikov, A. V. Plotnikov, and A. N. Vityuk, Differential Equations with Multivalued Right-Hand Side. Asymptotic Methods [in Russian], AstroPrint, Odessa (1999).

  3. A. V. Plotnikov and N. V. Skripnik, Differential Equations with Clear and Fuzzy Multivalued Right-Hand Side. Asymptotic Methods [in Russian], AstroPrint, Odessa (2009).

  4. V. Lakshmikantham, B. T. Granna, and J. V. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Sci. Publ., Cambridge (2006).

    Google Scholar 

  5. A. A. Martynyuk, Qualitative Analysis of Set-Valued Differential Equations, Birkh¨auser, Cham (2019).

  6. A. A. Tolstonogov, Differential Inclusions in Banach Spaces [in Russian], Nauka, Novosibirsk (1986).

  7. T. A. Komleva, A. V. Plotnikov, L. I. Plotnikova, and N. V. Skripnik, “Conditions for the existence of basic solutions of linear multivalued differential equations,” Ukr. Mat. Zh., 73, No. 5, 651–673 (2021); English translation: Ukr. Math. J., 73, No. 5, 758–783 (2021).

  8. E. V. Ocheretnyuk and V. I. Slyn’ko, “Estimates of the area of solutions of pseudolinear differential equations with Hukuhara derivative in the space conv (R2) ;” Ukr. Mat. Zh., 69, No. 2, 189–214 (2017); English translation: Ukr. Math. J., 69, No. 2, 224–254 (2017).

  9. A. V. Plotnikov and N. V. Skripnik, “An existence and uniqueness theorem to the Cauchy problem for generalized set differential equations,” Dyn. Contin. Discrete Impuls. Syst., Ser. A: Math. Anal., 20, No. 4, 433–445 (2013).

  10. A. V. Plotnikov and N. V. Skripnik, “Conditions for the existence of local solutions of set-valued differential equations with generalized derivative,” Ukr. Mat. Zh., 65, No. 10, 1350–1362 (2013); English translation: Ukr. Math. J., 65, No. 10, 1498–1513 (2014).

  11. N. V. Skripnik, “Three-step averaging scheme for set-valued differential equations with generalized derivative,” Nelin. Kolyv., 20, No. 3, 391–400 (2017); English translation: J. Math. Sci., 236, No. 3, 333–342 (2019).

  12. A. V. Plotnikov, T. A. Komleva, and L. I. Plotnikova, “Averaging of a system of set-valued differential equations with the Hukuhara derivative,” J. Uncertain. Syst., 13, No. 1, 3–13 (2019).

    Google Scholar 

  13. A. V. Plotnikov and A. V. Tumbrukaki, “Integro-differential equations with multivalued solutions,” Ukr. Mat. Zh., 52, No. 3, 359–367 (2000); English translation: Ukr. Math. J., 52, No. 3, 413–423 (2000).

  14. A. V. Plotnikov and A. V. Tumbrukaki, “Integro-differential inclusions with Hukuhara derivative,” Nelin. Kolyv., 8, No. 1, 80–88 (2005); English translation: Nonlin. Oscillat., 8, No. 1, 78–86 (2005).

  15. N. V. Skripnik, “Averaging of multivalued integral equations,” Nelin. Kolyv., 16, No. 3, 408–415 (2013); English translation: J. Math. Sci., 201, No. 3, 384–390 (2014).

  16. V. Babenko, “Numerical methods for solution of Volterra and Fredholm integral equations for functions with values in L-spaces,” Appl. Math. Comput., 291, 354–372 (2016).

    MathSciNet  Google Scholar 

  17. V. Babenko, “Calculus and nonlinear integral equations for functions with values in L-spaces,” Anal. Math., 45, No. 4, 727–755 (2019).

    Article  MathSciNet  Google Scholar 

  18. A. V. Plotnikov, T. A. Komleva, and I. V. Molchanyuk, “Existence and uniqueness theorem for set-valued Volterra–Hammerstein integral equations,” Asian-Europ. J. Math., 11, No. 3, 1850036, 11 p. (2018).

  19. A. V. Plotnikov and N. V. Skripnik, “Existence and uniqueness theorem for set integral equations,” J. Adv. Res. Dyn. Control Syst., 5, No. 2, 65–72 (2013).

    MathSciNet  Google Scholar 

  20. N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential Equations with Impulse Effects: Multivalued Right-Hand Sides with Discontinuities, Walter de Gruyter & Co., Berlin (2011).

    Book  Google Scholar 

  21. N. A. Perestyuk and N. V. Skripnik, “Averaging of set-valued impulsive systems,” Ukr. Mat. Zh., 65, No. 1, 126–142 (2013); English translation: Ukr. Math. J., 65, No. 1, 140–157 (2013).

  22. N. V. Skripnik, “Averaging of impulsive differential inclusions with Hukuhara derivative,” Nelin. Kolyv., 10, No. 3, 416–432 (2007); English translation: Nonlin. Oscillat., 10, No. 3, 422–438 (2007).

  23. I. V. Atamas’ and V. I. Slyn’ko, ‘Stability of fixed points for a class of quasilinear cascades in the space conv (Rn);” Ukr. Mat. Zh., 69, No. 9, 1166–1179 (2017); English translation: Ukr. Math. J., 69, No. 9, 1354–1369 (2018).

  24. T. A. Komleva, L. I. Plotnikova, and A. V. Plotnikov, “A multivalued discrete system and its properties,” Ukr. Mat. Zh., 70, No. 11, 1519–1524 (2018); English translation: Ukr. Math. J., 70, No. 11, 1750–1757 (2019).

  25. T. A. Komleva, L. I. Plotnikova, and A. V. Plotnikov, “Partial averaging of discrete-time set-valued systems,” Stud. Univ. Babes¸–Bolyai Math., 63, No. 4, 539–548 (2018).

  26. T. A. Komleva and A. V. Plotnikov, “Differential inclusions with Hukuhara derivative,” Nelin. Kolyv., 10, No. 2, 229–246 (2007); English translation: Nonlin. Oscillat., 10, No. 2, 229–245 (2007).

  27. A. V. Plotnikov, “Averaging differential embeddings with Hukuhara derivative,” Ukr. Mat. Zh., 41, No. 1, 121–125 (1989); English translation: Ukr. Math. J., 41, No. 1, 112–115 (1989).

  28. N. V. Plotnikova, “Approximation of a bundle of solutions of linear differential inclusions,” Nelin. Kolyv., 9, No. 3, 386–400 (2006); English translation: Nonlin. Oscillat., 9, No. 3, 375–390 (2006).

  29. N. V. Skripnik, “Periodic solutions of linear impulsive differential inclusions,” Ukr. Mat. Zh., 60, No. 9, 1287–1296 (2008); English translation: Ukr. Math. J., 60, No. 9, 1498–1508 (2008).

  30. V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor & Francis Group, London (2003).

    Google Scholar 

  31. N. A. Perestyuk and N. V. Skripnik, “Averaging of fuzzy systems,” Ukr. Mat. Zh., 70, No. 3, 412–428 (2018); English translation: Ukr. Math. J., 70, No. 3, 477–494 (2018).

  32. T. A. Komleva, A. V. Plotnikov, and N. V. Skripnik, “Differential equations with set-valued solutions,” Ukr. Mat. Zh., 60, No. 10, 1326–1337 (2008); English translation: Ukr. Math. J., 60, No. 10, 1540–1556 (2008).

  33. A. V. Plotnikov and T. A. Komleva, “Averaging of fuzzy differential equations on a finite interval,” Nelin. Kolyv., 14, No. 4, 516–527 (2011); English translation: Nonlin. Oscillat., 14, No. 4, 547–559 (2012).

  34. A. V. Plotnikov and T. A. Komleva, “Averaging of the fuzzy differential equations,” J. Uncertain. Syst., 6, No. 1, 30–37 (2012).

    MathSciNet  Google Scholar 

  35. A. V. Arsirii and A. V. Plotnikov, “Systems of control over set-valued trajectories with terminal quality criterion,” Ukr. Mat. Zh., 61, No. 8, 1142–1147 (2009); English translation: Ukr. Math. J., 61, No. 8, 1349–1356 (2009).

  36. T. O. Komleva and A. V. Plotnikov, “One time-optimal problem for a set-valued linear control system,” Ukr. Mat.Zh., 72, No. 8 1082–1094 (2020); English translation: Ukr. Math. J., 72, No. 8, 1251–1266 (2021); DOI: https://doi.org/10.37863/umzh.v72i7.2300.

  37. T. A. Komleva, L. I. Plotnikova, A. V. Plotnikov, and N. V. Skripnik, “Averaging in fuzzy controlled systems,” Nelin. Kolyv., 14, No. 3, 325–332 (2011); English translation: Nonlin. Oscillat., 14, No. 3, 342–349 (2012).

  38. A. V. Plotnikov, “Controlled quasidifferential equations and some their properties,” Differents. Uravn., 34, No. 10, 1332–1336 (1998).

    Google Scholar 

  39. V. A. Plotnikov and O. D. Kichmarenko, “Averaging of controlled equations with Hukuhara derivative,” Nelin. Kolyv., 9, No. 3, 376–385 (2006); English translation: Nonlin. Oscillat., 9, No. 3, 365–374 (2006).

  40. R. Jafari, S. Razvarz, A. Gegov, and W. Yu, “Fuzzy control of uncertain nonlinear systems with numerical techniques: a survey,” in: Advances in Computational Intelligence Systems, 1043, Springer, Cham (2020), pp. 3–14.

  41. S. Melliani, A. El Allaoui, and L. S. Chadli, “Controlled fuzzy evolution equations,” in: S. Melliani and O. Castillo (editors), Recent Advances in Intuitionistic Fuzzy Logic Systems, Studies in Fuzziness and Soft Computing, 372 Springer, Cham (2019), pp. 113–126.

  42. M. Najariyan and M. H. Farahi, “Optimal control of fuzzy controlled system with fuzzy initial conditions,” Iran. J. Fuzzy Syst., No. 10, 21–35 (2013).

  43. A. V. Plotnikov and T. A. Komleva, “The averaging of control linear fuzzy 2⇡-periodic differential equations,” Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 18, No. 6, 833–847 (2011).

  44. N. D. Phu, N. V. Hoa, and H. Vu, “On comparisons of set solutions for fuzzy control integro-differential systems,” J. Adv. Res. Appl. Math., 4, No. 1, 84–101 (2012).

    Article  MathSciNet  Google Scholar 

  45. L. T. Quang, N. D. Phu, N. V. Hoa, and H. Vu, “On maximal and minimal solutions for set integro-differential equations with feedback control,” Nonlinear Stud., 20, No. 1, 39–56 (2013).

    MathSciNet  Google Scholar 

  46. W. Yu and R. Jafari, Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number, Wiley-IEEE Press (2019).

  47. G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems, Prentice-Hall, Inc., Englewood Cliffs (1967).

    Google Scholar 

  48. M. Hukuhara, “Intégration des applications mesurables dont la valeur est un compact convexe,” Funkcial. Ekvac., No. 10, 205–223 (1967).

  49. R. A. Horn and Ch. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Plotnikov.

Additional information

Translated from Neliniini Kolyvannya, Vol. 25, No. 4, pp. 349–360, October–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komleva, T.O., Plotnikov, A.V. & Skripnik, N.V. Existence of Solutions of Linear Set-Valued Integral Equations and Their Properties. J Math Sci 277, 268–280 (2023). https://doi.org/10.1007/s10958-023-06831-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06831-1

Navigation