Skip to main content
Log in

Symmetries of Hamiltonian Systems on Lie Algebroids

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In the present paper, we study infinitesimal symmetries, natural infinitesimal symmetries, Newtonoid sections, infinitesimal Noether symmetries, and conservation laws for Hamiltonian systems within the general framework of Lie algebroids. Using dynamical covariant derivatives and Jacobi endomorphisms, we find invariant equations of some type of symmetries and prove that the canonical nonlinear connection induced by a regular Hamiltonian can be determined by these symmetries. Finally, we present examples from the optimal control theory that prove that the framework of Lie algebroids is more useful than the cotangent bundle in order to study the symmetries for the dynamics induced by a Hamiltonian function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer (1989).

  2. R. Abraham and J. Marsden, Foundation of Mechanics, Benjamin, New York (1978).

    Google Scholar 

  3. C. M. Arcuş, “Mechanical systems in the generalized Lie algebroids framework,” Int. J. Geom. Methods Mod. Phys., 11, 1450023 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Barbero-Liñán, M. Farré Puiggalí, and D. Martín de Diego, “Inverse problem for Lagrangian systems on Lie algebroids and applications to reduction by symmetries,” Monatsh. Math., 180, No. 4, 665–691 (2016).

  5. L. Berwald, “On system of second order ODE’s whose integral curves are topologically equivalent to the system of straight lines,” Ann. Math., 48, 93–215 (1947).

    MathSciNet  Google Scholar 

  6. L. Bua, I. Bucătaru, and M. Salgado, “Symmetries, Newtonoid vector fields and conservation laws on the Lagrangian k-symplectic formalism,” Rev. Math. Phys., 24, 1250030 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Bucătaru, “Linear connection for systems of higher order differential equations,” Houston J. Math., 32, No. 1, 315–332 (2005).

    MathSciNet  MATH  Google Scholar 

  8. I. Bucătaru and M. F. Dahl, “Semi-basic 1-form and Helmholtz conditions for the inverse problem of the calculus of variations,” J. Geom. Mech., 1, No. 2, 159–180 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Bucătaru, O. Constantinescu, and M. F. Dahl, “A geometric setting for systems of ordinary differential equations,” Int. J. Geom. Methods Mod. Phys., 8, No. 6, 12019 (2011).

  10. J. F. Cariñena and E. Martinez, “Generalized Jacobi equation and inverse problem in classical mechanics,” in: Proc. 18th Int. Colloq. “Group-Theoretical Methods in Physics” (Moscow, 1990), Nova Science, New York (1991).

  11. J. F. Cariñena and M. Rodríguez-Olmos, “Gauge equivalence and conserved quantities for Lagrangian systems on Lie algebroids,” J. Phys. A: Math. Theor., 42 (2009).

  12. J. F. Cariñena, I. Gheorghiu, and E. Martínez, “Jacobi fields for second-order differential equations on Lie algebroids,” in: Proc. 10th AIMS Int. Conf. “Dynamical Systems, Differential Equations and Applications” (Madrid), AIMS (2015), pp. 213–222.

  13. J. Cortes and E. Martínez, “Mechanical control systems on Lie algebroids,” IMA J. Math. Control Inform., 21 (2004), pp. 457–492.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Castellani, “Symmetries in constrained Hamiltonian systems,” Ann. Phys., 143, No. 2 (1982), pp. 357–371.

    Article  MathSciNet  Google Scholar 

  15. M. Crampin, “Tangent bundle geometry for Lagrangian dynamics,” J. Phys. A: Math. Gen., 16 (1983), pp. 3755–3772.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Crampin, E. Martínez, and W. Sarlet, “Linear connections for system of second-order ordinary differential equations,” Ann. Inst. H. Poincaré, 65, No. 2 (1996), pp. 223–249.

    MathSciNet  MATH  Google Scholar 

  17. M. Crampin and F. A. E. Pirani, Applicable Differential Geometry, Cambridge Univ. Press (1986).

    MATH  Google Scholar 

  18. M. Crâsmareanu and C. Ida, “Almost analyticity on almost (para) complex Lie algebroids,” Res. Math., 67, No. 34 (2015), pp. 495–519.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. L. Fernandes, “Lie algebroids, holonomy and characteristic classes,” Adv. Math., 170 (2002), pp. 119–179.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Frölicher and A. Nijenhuis, “Theory of vector-valued differential forms,” Nederl. Akad. Wetensch. Proc. Ser. A, 59 (1956), pp. 338–359.

    Article  MATH  Google Scholar 

  21. X. Gràcia and J. M. Pons, “Symmetries and infinitesimal symmetries of singular differential equations,” J. Phys. A: Math. Gen., 35 (2002), pp. 5059–5077.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Grabowski and P. Urbanski, “Tangent and cotangent lift and graded Lie algebra associated with Lie algebroids,” Ann. Global Anal. Geom., 15 (1997), pp. 447–486.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Grifone, “Structure presque tangente et connections, I,” Ann. Inst. Fourier, 22, No. 1 (1972), pp. 287–334.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. J. Higgins and K. Mackenzie, “Algebraic constructions in the category of Lie algebroids,” J. Algebra, 129 (1990), pp. 194–230.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Hrimiuc and L. Popescu, “Nonlinear connections on dual Lie algebroids,” Balkan J. Geom. Appl., 11, No. 1 (2006), pp. 73–80.

    MathSciNet  MATH  Google Scholar 

  26. D. Hrimiuc and L. Popescu, “Geodesics of sub-Finslerian geometries,” in: Proc. Conf. “Differential Geometry and Its Applications” (Prague, 2004), Prague (2005), pp. 59–67.

  27. M. Jerie and G. Prince, “Jacobi fields and linear connections for arbitrary second-order ODEs,” J. Geom. Phys., 43 (2002), pp. 351–370.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. de León and P. R. Rodrigues 1989, North-Holland, Amsterdam.

  29. M. de León and D. Martín de Diego, “Symmetries and constants of the motion for singular Lagrangian systems,” Int. J. Theor. Phys., 35, No. 5 (1996), pp. 975–1011.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. de León, D. Martín de Diego, and A. Santamaria Merino, “Symmetries in classical fiel theories,” Int. J. Geom. Meth. Mod. Phys., 5 (2004), pp. 651–710.

  31. M. de León, J. C. Marrero, and E. Martínez, “Lagrangian submanifolds and dynamics on Lie algebroids,” J. Phys. A: Math. Gen., 38 (2005), pp. 241–308.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. de León, D. Martín de Diego, M. Salgado, S. Vilariño, “k-Symplectic formalism on Lie algebroids,” J. Phys. A: Math. Theor., 42 (2009).

  33. P. Libermann, “Lie algebroids and mechanics,” 32 (1996), pp. 147–162.

  34. K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge Univ. Press, Cambridge (1987).

    Book  MATH  Google Scholar 

  35. K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge Univ. Press, Cambridge (2005).

    Book  MATH  Google Scholar 

  36. C. M. Marle, “Symmetries of Hamiltonian systems on symplectic and Poisson manifolds,” in: Similarity and Symmetry Methods (J. F. Ganghoffer and I. Mladenov, eds.), Springer (2014), pp. 185–269.

  37. G. Marmo and N. Mukunda, “Symmetries and constant of the motion in the Lagrangian formalism on TQ,” Nuovo Cim. B., 92 (1986), pp. 1–12.

    Article  Google Scholar 

  38. J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer (2013).

  39. E. Martínez, J. F. Cariñema, W. Sarlet, “Derivations of differential forms along the tangent bundle projection, II,” Differ. Geom. Appl., 3, No. 1 (1993), pp. 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Martínez, “Lagrangian mechanics on Lie algebroids,” Acta Appl. Math., 67 (2001), pp. 295–320.

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Martínez, T. Mestdag, and W. Sarlet, “Lie algebroid structures and Lagrangian systems on affine bundles,” J. Geom. Phys., 44, No. 1 (2002), pp. 70–95.

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Mestdag and B. Langerock, “A Lie algebroid framework for non-holonomic systems,” J. Phys. A: Math. Gen., 38, No. 5 (2005), pp. 1097–1111.

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Miron, D. Hrimiuc, H. Shimada, and S. Sabău, The Geometry of Hamilton and Lagrange Spaces, Springer (2001).

  44. V. Mukhanov and A. Wipf, “On the symmetries of Hamiltonian systems,” Int. J. Mod. Phys. A, 10, No. 4 (1995), pp. 579–610.

    Article  MathSciNet  MATH  Google Scholar 

  45. V. Oproiu, “Regular vector fields and connections on cotangent bundles,” An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 37, No. 1 (1991), pp. 87–104.

  46. E. Peyghan, “Berwald-type and Yano-type connections on Lie algebroids,” Int. J. Geom. Meth. Mod. Phys., 12, No. 10 (2015).

  47. L. Popescu, “The geometry of Lie algebroids and applications to optimal control,” An. S¸tiint¸. Univ. Al. I. Cuza. Ia¸si. Ser. 1. Math., 51 (2005), pp. 155–170.

  48. L. Popescu, “Geometrical structures on Lie algebroids,” Publ. Math. Debrecen, 72, No. 1-2 (2008), pp. 95–109.

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Popescu, “Hamiltonian formalism on Lie algebroids and its applications,” in: Proc. Conf. “Differential Geometry and Its Applications” (Olomouc, 2007), World Scientific, Singapore (2008), pp. 665–673.

  50. L. Popescu, “Lie algebroids framework for distributional systems,” An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 55, No. 2 (2009), pp. 373–390.

  51. L. Popescu, “Metric nonlinear connections on Lie algebroids,” Balkan J. Geom. Appl., 16, No. 1 (2011), pp. 111–121.

    MathSciNet  MATH  Google Scholar 

  52. L. Popescu, “Metric non-linear connections on the prolongation of a Lie algebroid to its dual bundle,” An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 57 (2011), pp. 211–220.

  53. L. Popescu, “Dual structures on the prolongations of a Lie algebroid,” An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Ser. 1. Math., 59, No. 2 (2013), pp. 357–374.

  54. L. Popescu, “Geometrical structures on the cotangent bundle,” Int. J. Geom. Meth. Mod. Phys., 13, No. 5 (2016).

  55. L. Popescu, “Symmetries of second order differential equations on Lie algebroids,” J. Geom. Phys., 117 (2017), pp. 84–98.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Popescu, “Symmetries and conservation laws of Hamiltonian systems,” J. Geom. Phys., 151 (2020).

  57. L. Popescu and R. Criveanu, “A note on metric nonlinear connections on the cotangent bundle,” Carpathian J. Math., 27, No. 2 (2011), pp. 261–268.

    Article  MathSciNet  MATH  Google Scholar 

  58. G. Prince, “Toward a classification of dynamical symmetries in classical mechanics,” Bull. Austr. Math. Soc., 27 (1983), pp. 53–71.

    Article  MathSciNet  MATH  Google Scholar 

  59. G. Prince, “A complete classification of dynamical symmetries in classical mechanics,” Bull. Austr. Math. Soc., 32 (1985), pp. 299–308.

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Puta, Hamiltonian Mechanical Systems and Geometric Quantization, Kluwer, Dordrecht (1993).

    Book  MATH  Google Scholar 

  61. N. Román-Roy, M. Salgado, and S. Vilariño, “Symmetries and conservation laws in Günter k-symplectic formalism of field theory,” Rev. Math. Phys., 19, No. 10 (2007), pp. 1117–1147.

    Article  MathSciNet  MATH  Google Scholar 

  62. W. Sarlet, “Adjoint symmetries of second-order differential equations and generalizations,” in: Proc. Conf. “Differential Geometry and Its Applications” (Brno, 1989), World Scientific, Singapore (1990), pp. 412–421.

  63. W. Sarlet, “Linear connections along the tangent bundle projection,” in: Proc. Conf. “Variations, Geometry and Physics” (Olomouc, 2007), New York, Nova Science (2008).

  64. J. Szilasi, “A setting for spray and Finsler geometry,” in: Handbook of Finsler Geometry, Kluwer (2003), pp. 1183–1426.

  65. A. Weinstein, “Lagrangian mechanics and groupoids,” Fields Inst. Commun., 7 (1996), pp. 207–231.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Popescu.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 178, Optimal Control, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, L. Symmetries of Hamiltonian Systems on Lie Algebroids. J Math Sci 276, 310–333 (2023). https://doi.org/10.1007/s10958-023-06743-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06743-0

Keywords and phrases

AMS Subject Classification

Navigation