Skip to main content
Log in

Bounded Solutions of Functional Integro-Differential Equations Arising from Heat Conduction in Materials with Memory

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider recurrent behavior of bounded solutions for a functional integro-differential equation arising from heat conduction in materials with memory. Prior to the main results, we give a new version of composite theorem on measure pseudo almost automorphic functions involved in delay. Based on recently obtained results on the uniform exponential stability as well as contraction mapping principle, we prove some existence and uniqueness theorems on the recurrence of bounded mild solutions for the addressed equations with infinite delay. Finally, we finish this paper with an example on partial integro-differential equation which frequently comes to light in the study of heat conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbas, “Pseudo almost automorphic solutions of some nonlinear integro-differential equations,” Comput. Math. Appl., 62, No. 5, 2259–2272 (2011).

    MathSciNet  MATH  Google Scholar 

  2. S. Abbas and Y. Xia, “Existence and attractivity of k-almost automorphic solutions of a model of cellular neural network with delay,” Acta Math. Sci., 1, 290–302 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Álvarez and C. Lizama, “Weighted pseudo almost automorphic mild solutions for two-term fractional-order differential equations,” Appl. Math. Comput., 271, 154–167 (2015).

    MathSciNet  MATH  Google Scholar 

  4. J. Blot, G. M. Mophou, G. M. N’Guérékata, and D. Pennequin, “Weighted pseudo almost automorphic functions and applications to abstract differential equations,” Nonlin. Anal., 71, 903–909 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Blot, P. Cieutat, and K. Ezzinbi, “Measure theory and pseudo almost automorphic functions: New developments and aplications,” Nonlin. Anal., 75, 2426–2447 (2012).

    Article  MATH  Google Scholar 

  6. A. Caicedo, C. Cuevas, G. M. Mophou, and G. M. N’Guérékata, “Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces,” J. Franklin Inst., 349, 1–24 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. K. Chang and X. X. Luo, “Asymptotic behavior of solutions to neutral functional differential equations with infinite delay,” Publ. Math. Deb., 86, 1–17 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. K. Chang and R. Ponce, “Uniform exponential stability and applications to bounded solutions of integro-differential equations in Banach spaces,” J. Integral Equations Appl., 30, No. 3, 347–369 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Chen, T. Xiao, and J. Liang, “Uniform exponential stability of solutions to abstract Volterra equations,” J. Evol. Equations, 4, 661–674 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Chen, J. Liang, and T. Xiao, “Stability of solutions to integro–differential equations in Hilbert spaces,” Bull. Belg. Math. Soc., 18, 781–792 (2011).

    MathSciNet  MATH  Google Scholar 

  11. B. D. Coleman and M. E. Gurtin, “Equipresence and constitutive equation for rigid heat conductors,” Z. Angew. Math. Phys., 18, 199–208 (1967).

    Article  MathSciNet  Google Scholar 

  12. C. Cuevas and C. Lizama, “Almost automorphic solutions to integral equations on the line,” Semigroup Forum, 79, 461–472 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Cuevas and J. Souza, “Existence of S-asymptotically ω-periodic solutions for fractional order functional integro-diffeferential equations with infinite delay,” Nonlin. Anal., 72, 1683–1689 (2010).

    Article  MATH  Google Scholar 

  14. B. de Andrade, C. Cuevas, and E. Henríquez, “Asymptotic periodicity and almost automorphy for a class of Volterra intego-differential equations,” Math. Methods Appl. Sci., 35, 795–811 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer-Verlag, New York (2013).

    Book  MATH  Google Scholar 

  16. H. S. Ding, J. Liang, and T. J. Xiao, “Pseudo almost periodic solutions to integro-differential equations of heat conduction in materials with memory,” Nonlin. Anal. RWA., 13, 2659–2670 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. S. Ding, J. Liang, and J. Nieto, “Weighted pseudo almost periodic functions and applications to evolution equations with delay,” Appl. Math. Comput., 219, 8949–8958 (2013).

    MathSciNet  MATH  Google Scholar 

  18. M. Gurtin and A. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Rat. Mech. Anal., 31, 113–126 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, Springer-Verlag, New York (1993).

  20. E. Hernández and H. Henríquez, “Pseudo-almost periodic solutions for non-autonomous neutral differential equations with unbounded delay,” Nonlin. Anal. RWA., 9, 430–437 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  21. H. R. Henríquez and C. Cuevas, “Almost automorphy for abstract neutral differential equations via control theory,” Ann. Mat., 192, 393–405 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  22. H. R. Henríquez, C. Cuevas, and A. Caicedo, “Asymptotically periodic solutions of neutral partial differential equations with infinite delay,” Commun. Pure Appl. Anal., 12, 2031–2068 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Hino, S. Murakami, and T. Naito, Functional-Differential Equations with Infinite Delay, Springer-Verlag, Berlin (1991).

    Book  MATH  Google Scholar 

  24. V. Keyantuo, C. Lizama, and M. Warma, “Asymptotic behavior of fractional-order semilinear evolution equations,” Differ. Integral Equations, 26, 757–780 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Liang, J. Zhang, and T. J. Xiao, “Composition of pseudo almost automorphic and asymptotically almost automorphic functions,” J. Math. Anal. Appl., 340, 1493–1499 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Lizama and G. M. N’Guérékata, “Bounded mild solutions for semilinear integro-differential equations in Banach spaces,” Integral Equ. Operator Theory, 68, 207–227 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Lizama and R. Ponce, “Bounded solutions to a class of semilinear integro-differential equations in Banach spaces,” Nonlin. Anal., 74, 3397–3406 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  28. G. M. N’Guérékata, Topics in Almost Automorphy, Springer-Verlag, New York (2005).

    MATH  Google Scholar 

  29. R. Ponce, “Bounded mild solutions to fractional integro-differential equations in Banach spaces,” Semigroup Forum, 87, 377–392 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Santos and C. Cuevas, “Asymptotically almost automporphic solutions of abstract fractional intego-differential neutral equations,” Appl. Math. Lett., 23, 960–965 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  31. J.Wu, Theory and Applications of Partial Functional-Differential Equations, Springer-Verlag, New York (1996).

    Book  MATH  Google Scholar 

  32. X. B. Shu, F. Xu, and Y. Shi, “S-asymptotically ω-positive periodic solutions for a class of neutral fractional differential equations,” Appl. Math. Comput., 2015, 768–776.

  33. Z. Xia, “Pseudo asymptotically periodic solutions for Volterra intego-differential equations,” Math. Methods Appl. Sci., 38, 799–810 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  34. T. J. Xiao, J. Liang, and J. Zhang, “Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces,” Semigroup Forum, 76, 518–524 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  35. P. You, “Characteristic conditions for a C0-semigroup with continuity in the uniform operator topology for t > 0 in Hilbert space,” Proc. Am. Math. Soc., 116, 991–997 (1992).

    Article  MATH  Google Scholar 

  36. Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-K. Chang.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 178, Optimal Control, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YK., Alzabut, J. & Ponce, R. Bounded Solutions of Functional Integro-Differential Equations Arising from Heat Conduction in Materials with Memory. J Math Sci 276, 237–252 (2023). https://doi.org/10.1007/s10958-023-06738-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06738-x

and phrases

AMS Subject Classification

Navigation