Skip to main content
Log in

One-Point Function of the Four-Vertex Model

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the four-vertex model on a finite domain of the square lattice with the so-called scalar-product boundary conditions. It can be described in terms of nonintersecting lattice paths which are additionally restricted in their propagation in one of the two spacial directions. We compute the one-point function measuring the probability to obtain a path on a given lattice edge. We also relate this function with another one-point function which can be regarded as a local anti-ferroelectric order parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Li, H. Park and M. Widom, “Finite-size scaling amplitudes in a random tiling model,” J. Phys. A: Math. Gen., 23, L573–L580 (1990).

    Article  MathSciNet  Google Scholar 

  2. W. Li and H. Park, “Logarithmic singularity in the surface free energy near commensurate- incommensurate transitions,” J. Phys. A: Math. Gen., 24, 257–264 (1991).

    Article  Google Scholar 

  3. N. M. Bogoliubov, “Four-vertex model and random tilings,” Theor. Math. Phys., 155, 523–535 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. M. Bogoliubov, “Four-vertex model,” J. Math. Sci., 151, 2816–2828 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. M. Bogolyubov and C. Malyshev, “Integrable models and combinatorics,” Russian Math. Surveys 70, 789–856 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Cohn, M. Larsen and J. Propp, “The shape of a typical boxed plane partition,” New York J. Math., 4, 137–165 (1998).

    MathSciNet  MATH  Google Scholar 

  7. J. de Gier, R. Kenyon and S. S. Watson, “Limit shapes for the asymmetric five vertex model,” Commun. Math. Phys., 385, 793–836 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. G. Pronko, “The five-vertex model and enumerations of plane partitions,” J. Math. Sci., 213, 756–768 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Bleher and K. Liechty, “Six-vertex model with partial domain wall boundary conditions: Ferroelectric phase,” J. Math. Phys., 56, 023302 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, Oxford (1995).

    MATH  Google Scholar 

  11. V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge (1993).

    Book  MATH  Google Scholar 

  12. F. Colomo, G. Di Giulio and A. G. Pronko, “Six-vertex model on a finite lattice: integral representations for nonlocal correlation functions,” Nucl. Phys. B 972, 115535 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. M. Bressoud, Proofs and Confirmations: the Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  14. M. L. Mehta, Random Matrices, Elsevier, Amsterdam, 3rd. ed., (2004).

    MATH  Google Scholar 

  15. V. E. Korepin and P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions,” J. Phys. A 33, 7053–7066 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. O. F. Syljuasen and M. B. Zvonarev, “Monte-Carlo simulations of vertex models,” Phys. Rev. E 70, 016118 (2004).

    Article  Google Scholar 

  17. D. Allison and N. Reshetikhin, “Numerical study of the 6-vertex model with domain wall boundary conditions,” Ann. Inst. Fourier (Grenoble) 55, 1847–1869 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. S. Kapitonov and A. G. Pronko, “Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse,” Zap. Nauchn. Semin. POMI 494, 168–218 (2020).

    MATH  Google Scholar 

  19. P. Belov and N. Reshetikhin, “The two-point correlation function in the six-vertex model,” J. Phys. A, 55, 155001 (2022).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Bogolyubov or A. G. Pronko.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 509, 2021, pp. 39–53.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogolyubov, N.M., Pronko, A.G. One-Point Function of the Four-Vertex Model. J Math Sci 275, 249–258 (2023). https://doi.org/10.1007/s10958-023-06677-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06677-7

Navigation