Skip to main content
Log in

A General Vector Field Coupled to a Strongly Compressible Turbulent Flow

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the model of a transverse vector (e.g. magnetic) field with the most general form of the nonlinearity, known as the \(\mathcal{A}\) model, passively advected by a strongly compressible turbulent flow, governed by the randomly stirred Navier–Stokes equation. The full stochastic problem is equivalent to a certain renormalizable field theoretic model with an infrared-attractive fixed point. Thus, the scaling behaviour for the large-scale, long-distance behaviour is established. However, the question whether the parameter \(\mathcal{A}\) tends to a certain fixed-point value of the renormalization group equations or remains arbitrary, cannot be answered within the one-loop approximation of our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge (1995).

  2. G. Falkovich, K. Gawedzki, and M. Vergassola, “Particles and fields in fluid turbulence,” Rev. Mod. Phys., 73, 913 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. N. Vasiliev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Boca Raton (Florida, US), Chapman & Hall/CRC (2004).

  4. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, “On the multifractal nature of fully developed turbulence and chaotic systems,” J. Phys. A: Math. Gen., 17, 3521–3531 (1984).

    Article  MathSciNet  Google Scholar 

  5. U. Frisch and G. Parisi, “Fully Developed Turbulence and Intermittency,” In: M. Ghil, R. Benzi, G. Parisi (eds.), Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, NY, North-Holland publishing Co. (1985), pp. 84–88.

    Google Scholar 

  6. R. Benzi, L. Biferale, G. Paladin, A. Vulpiani, and M. Vergassola, “Multifractality in the statistics of the velocity gradients in turbulence,” Phys. Rev. Lett., 67, 2299 (1991).

    Article  Google Scholar 

  7. Giorgio Parisi–Facts–2021. NobelPrize.org. Nobel Prize Outreach AB 2021. Mon. 11 Oct 2021. https://www.nobelprize.org/prizes/physics/2021/parisi/facts/

  8. R. H. Kraichnan, “Anomalous scaling of a randomly advected passive scalar,” Phys. Rev. Lett., 72, 1016 (1994).

    Article  Google Scholar 

  9. K. Gawedzki and A. Kupiainen, “Anomalous Scaling of the Passive Scalar,” Phys. Rev. Lett., 75, 3834 (1995).

    Article  Google Scholar 

  10. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, “Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar,” Phys. Rev. E, 52, 4924 (1995).

    Article  MathSciNet  Google Scholar 

  11. D. Bernard, K. Gawedzki, and A. Kupiainen, “Anomalous scaling in the N-point functions of a passive scalar,” Phys. Rev. E, 54, 2564 (1996).

    Article  MathSciNet  Google Scholar 

  12. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, “Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar,” Phys. Rev. E, 58, 1823 (1998).

  13. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, “Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion,” Theor. Math. Phys., 120, 1074 (1999).

  14. L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, and A. N. Vasil’ev, “Anomalous exponents in the rapid-change model of the passive scalar advection in the order ε3,” Phys. Rev. E, 63 (2001), 025303(R), E 64 (2001), 019901(E).

  15. L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, and A. N. Vasil’ev, “Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order ε3,” Phys. Rev. E, 64, 056306 (2001).

  16. N. V. Antonov, “Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection,” J. Phys. A: Math. Gen., 39, 7825–7865 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, “Quantum field renormalization group in the theory of fully developed turbulence,” Usp. Fiz. Nauk, 166, 1257 (1996); Engl. Transl., Phys. Usp., 39, 1193 (1996).

  18. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasiliev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, London, 1999.

  19. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, “Infrared divergences and the renormalization group in the theory of fully developed turbulence,” Sov. Phys. JETP, 68, 733–742 (1989).

  20. N. V. Antonov, “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field,” Phys. Rev. E, 60, 6691 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Ts. Adzhemyan, N. V. Antonov, and J. Honkonen, “Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation,” Phys. Rev. E, 66, 036313 (2002).

  22. L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, and T. L. Kim, “Anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field: Two-loop approximation,” Phys. Rev. E, 71, 016303 (2005).

  23. N. V. Antonov, “Anomalous scaling of a passive scalar advected by the synthetic compressible flow,” Physica D, 144, 370 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Ts. Adzhemyan and N. V. Antonov, “Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow,” Phys. Rev. E, 58, 7381 (1998).

  25. M. Vergassola, “Anomalous scaling for passively advected magnetic fields,” Phys. Rev. E, 53, R3021 (1996).

    Article  Google Scholar 

  26. I. Rogachevskii and N. Kleeorin, “Intermittency and anomalous scaling for magnetic fluctuations,” Phys. Rev. E, 56, 417 (1997).

    Article  Google Scholar 

  27. L. Ts. Adzhemyan, N. V. Antonov, A. Mazzino, P. Muratore Ginanneschi, and A. V. Runov, “Pressure and intermittency in passive vector turbulence,” Europhys. Lett., 55, 801 (2001).

  28. N. V. Antonov, M. Hnatich, J. Honkonen, and M. Jurcisin, “Turbulence with pressure: Anomalous scaling of a passive vector field,” Phys. Rev. E, 68, 046306 (2003).

    Article  Google Scholar 

  29. H. Arponen, “Anomalous scaling and anisotropy in models of passively advected vector fields,” Phys. Rev. E, 79, 056303 (2009).

    Article  MathSciNet  Google Scholar 

  30. N. V. Antonov and N. M. Gulitskiy, “Anomalous scaling in statistical models of passively advected vector fields,” Theor. Math. Phys., 176, 851–860 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Lanotte and A. Mazzino, “Anisotropic nonperturbative zero modes for passively advected magnetic fields,” Phys. Rev. E, 60, R3483 (1999).

    Article  Google Scholar 

  32. N. V. Antonov, A. Lanotte, and A. Mazzino, “Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence,” Phys. Rev. E, 61, 6586 (2000).

    Article  Google Scholar 

  33. N. V. Antonov, J. Honkonen, A. Mazzino, and P. Muratore Ginanneschi, “Manifestation of anisotropy persistence in the hierarchies of magnetohydrodynamical scaling exponents,” Phys. Rev. E, 62, R5891 (2000).

  34. I. Arad, L. Biferale, and I. Procaccia, “Nonperturbative spectrum of anomalous scaling exponents in the anisotropic sectors of passively advected magnetic fields,” Phys. Rev. E, 61, 2654 (2000).

    Article  Google Scholar 

  35. N. V. Antonov and N. M. Gulitskiy, “Anomalous scaling and large-scale anisotropy in magnetohydrodynamic turbulence: Two-loop renormalization-group analysis of the Kazantsev–Kraichnan kinematic model,” Phys. Rev. E, 85, 065301(R) (2012).

    Article  Google Scholar 

  36. A. V. Runov, “On the Field Theoretical Approach to the Anomalous Scaling in Turbulence,” Report SPbU-IP-99-08 (St. Petersburg State University 1999), ArXiv:chao-dyn/9906026.

  37. L. Ts. Adzhemyan, N. V. Antonov, and A. V. Runov, “Anomalous scaling, nonlocality, and anisotropy in a model of the passively advected vector field,” Phys. Rev. E, 64, 046310 (2001).

  38. I. Arad and I. Procaccia, “Spectrum of anisotropic exponents in hydrodynamic systems with pressure,” Phys. Rev. E, 63, 056302 (2001).

    Article  Google Scholar 

  39. L. Ts. Adzhemyan and A. V. Runov, “Structure functions in a model of passive turbulent transfer of a vector field,” Vestn. St.Petersburg Univ., Ser. Phys. Chem., 1, No. 4, 85 (2001).

  40. L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol’din, and M. V. Kompaniets, “Anomalous scaling of a passive vector field in d dimensions: Higher-order structure functions,” J. Phys. A, Math. Theor., 46, 135002 (2013).

  41. L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol’din, and M. V. Kompaniets, “Anomalous scaling in a model of a passive turbulece transfer of a vector field: Higher-order structure functions,” Vestn. St.Petersburg Univ., Ser. Phys. Chem., 1 (2009).

  42. L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol’din, and M. V. Kompaniets, “Anomalous scaling of a passive vector field in d dimensions: Higher-order structure functions,” J. Phys. A, Math. Theor., 46, 135002 (2013).

  43. I. Staroselsky, V. Yakhot, S. Kida, and S. A. Orszag, “Long-time, large-scale properties of a randomly stirred compressible fluid,” Phys. Rev. Lett., 65, 171 (1990).

    Article  Google Scholar 

  44. N. V. Antonov, M. Yu. Nalimov, and A. A. Udalov, “Renormalization group in the problem of the fully developed turbulence of a compressible fluid,” Theor. Math. Phys., 110, 305 (1997).

    Article  MATH  Google Scholar 

  45. N. V. Antonov and M. M. Kostenko, “Anomalous scaling of passive scalar fields advected by the Navier–Stokes velocity ensemble: Effects of strong compressibility and large-scale anisotropy,” Phys. Rev. E, 90, 063016 (2014).

    Article  Google Scholar 

  46. N. V. Antonov and M. M. Kostenko, “Anomalous scaling in magnetohydrodynamic turbulence: Effects of anisotropy and compressibility in the kinematic approximation,” Phys. Rev. E, 92, 053013 (2015).

    Article  MathSciNet  Google Scholar 

  47. N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, and T. Lučivjanský, “Stochastic Navier–Stokes equation and advection of a tracer field: One-loop renormalization near d = 4,” EPJ Web of Conferences, 164, 07044 (2017).

    Article  Google Scholar 

  48. N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, and T. Lučivjanský, “Advection of a passive scalar field by turbulent compressible fluid: renormalization group analysis near d = 4,” EPJ Web of Conferences, 137, 1000 (2017).

    Article  Google Scholar 

  49. N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, and T. Lučivjanský, “Renormalization group analysis of a turbulent compressible fluid near d = 4: Crossover between local and non-local scaling regimes,” EPJ Web of Conferences, 125, 05006 (2016).

    Article  Google Scholar 

  50. N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, and T. Lučivjanský, “Turbulent compressible fluid: renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields,” Phys. Rev. E, 95, 033120 (2017).

    Article  Google Scholar 

  51. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Vol. 6, Course of Theoretical Physics, Pergamon Press, 2nd English ed., Oxford (1987).

  52. J. Honkonen, “Comment on “Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields,” Phys. Rev. E, 104, 027101 (2021).

    Article  MathSciNet  Google Scholar 

  53. M. Hnatič, N. M. Gulitskiy, T. Lučivjanský, L. Mižišin, and V. Škultéty, “Stochastic Navier–Stokes equation for a compressible fluid: two-loop approximation,” ArXiv:1810.03462 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Antonov.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 509, 2021, pp. 5–24.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, N.V., Tumakova, M.M. A General Vector Field Coupled to a Strongly Compressible Turbulent Flow. J Math Sci 275, 225–238 (2023). https://doi.org/10.1007/s10958-023-06675-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06675-9

Navigation