Skip to main content
Log in

APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS TO SIMULATING LÉVY PROCESSES

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In the paper, we prove probabilistic analogs of the universal approximation theorems and link continuous random variables of a certain type and monotonic feedforward artificial neural networks with one-dimensional input, output and one hidden layer. In particular, we show that any continuous infinitely divisible random variable can be successfully approximated with a mix of logistic distributions. Based on the theorems proved in the current paper, we develop a new approach for developing Monte Carlo methods combined with artificial neural networks for pricing options in Lévy models. In contrast to straightforward incorporation of neural networks into Monte Carlo methods, we approximate the cumulative distribution function, but not its inverse. Moreover, we give a clear probabilistic interpretation of the constructed approximator that helps us simulate the Lévy process by using only separate components of our neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable

References

  1. Bertoin J. Lévy Processes. Cambridge Tracts in Mathematics. 1996. 121. Cambridge Univer. Press, Cambridge.

  2. Barndorff-Nielsen O. E. Processes of Normal Inverse Gaussian Type. Finance and Stochastics, 1998, 2, pp. 41–68.

    Article  MathSciNet  MATH  Google Scholar 

  3. Barndorff-Nielsen O. E., Levendorskiǐ S. Feller processes of Normal Inverse Gaussian type. Quantitative Finance, 2001, 1, pp. 318–331.

    Article  MathSciNet  MATH  Google Scholar 

  4. Beliavsky G., Danilova N., Ougolnitsky G. Calculation of Probability of the Exit of a Stochastic Process from a Band by Monte-Carlo Method: A Wiener-Hopf Factorization. Mathematics, 2019, 7(7):581.

    Article  Google Scholar 

  5. Boyarchenko S., Levendorskiǐ S. Option pricing for truncated Lévy processes. International Journal of Theoretical and Applied Finance, 2000, 3, pp. 549–552.

    Article  MATH  Google Scholar 

  6. Boyarchenko S.I. and Levendorskiǐ S.Z. Non-Gaussian Merton-Black-Scholes theory. Advanced Series on Statistical Science & Applied Probability 2002, 9. World Scientific Press.

  7. Boyarchenko S., Levendorskiǐ S. Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations. International Journal of Theoretical and Applied Finance, 2019, 22(03), pp. 1-49, May.

  8. Carr P., Geman H., Madan D.B., Yor M. The fine structure of asset returns: an empirical investigation. Journal of Business, 2002, 75, pp. 305–332.

    Article  Google Scholar 

  9. Cont R., Tankov P. Financial Modeling with Jump Processes. 2004. Chapman & Hall/CRC, Boca Raton, FL.

  10. Cybenko G. Approximation by superpositions of a sigmoidal function, Mathematics of Control. Signals and Systems, 1989, 2, pp. 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  11. Daniels H., Velikova M. Monotone and partially monotone neural networks. IEEE Transactions on Neural Networks, 2010, 21(6), pp. 906–917.

    Article  Google Scholar 

  12. Dixon M. F., Halperin I., Bilokon P. Machine Learning in Finance: From Theory to Practice. Germany: Springer International Publishing, 2020.

    Book  MATH  Google Scholar 

  13. Eberlein E., Keller U. Hyperbolic distributions in finance. Bernoulli, 1995, 1, pp. 281–299.

    Article  MATH  Google Scholar 

  14. Eberlein E., Keller U., Prause K. New insights into smile, mispricing and value at risk: The hyperbolic model. Journal of Business, 1998, 71, pp. 371–406.

    Article  Google Scholar 

  15. Ferreiro-Castilla A., Kyprianou A.E., Scheichl R., Suryanarayana G. Multilevel Monte Carlo Simulation for Levy Processes Based on the Wiener-Hopf Factorisation, Stochastic Processes and their Applications, 2014, vol. 124(2), pp. 985–1010.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferreiro-Castilla A., Van Schaik K. Applying the Wiener-Hopf Monte Carlo simulation technique for Lévy processes to path functionals. Journal of Applied Probability, 2015, vol. 52(1), pp. 129–148.

    Article  MathSciNet  MATH  Google Scholar 

  17. Goudenège L., Molent A., Zanette A. Machine learning for pricing American options in high-dimensional Markovian and non-Markovian models. Quantitative Finance, 2020, 20(4), pp. 573–591.

    Article  MathSciNet  MATH  Google Scholar 

  18. Grohs P., Hornung F., Jentzen A., von Wurstemberger P. A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations (Vol. 284). 2023. American Mathematical Society.

  19. Hertz J. Introduction to the theory of neural computation, 2018, CRC Press.

  20. Hirsa A, Karatas T, Oskoui A. Supervised deep neural networks (DNNS) for pricing/calibration of vanilla/exotic options under various different processes. 2019. arXiv:1902.05810.

  21. Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4(2), pp. 251–257.

    Article  MathSciNet  Google Scholar 

  22. Horvath B., Muguruza A., Tomas M. Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models, Quantitative Finance, 2021, 21(1), pp. 11–27.

    Article  MathSciNet  MATH  Google Scholar 

  23. Huh J. Pricing Options with Exponential Lévy Neural Network. Expert Systems with Applications, 2019, 127, https://doi.org/10.1016/j.eswa.2019.03.008

  24. Kim Y.S., Rachev, S., Bianchi M.S., Fabozzi F.J. Computing VaR and AVar in Infinitely Divisible Distributions. Probability and Mathematical Statistics, 2010, 30(2), pp. 223–245.

    MathSciNet  MATH  Google Scholar 

  25. Kay H., Ungar L. H. Estimating monotonic functions and their bounds. AIChE J., 2000, 46(12), pp. 2426–2434.

    Article  Google Scholar 

  26. Koponen I. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Physics Review E, 1995, 52, pp. 1197–1199.

    Article  Google Scholar 

  27. Kou S.G. A jump-diffusion model for option pricing. Management Science, 2002, 48, pp. 1086–1101.

    Article  MATH  Google Scholar 

  28. Kudryavtsev, O., Levendorskiǐ S. Fast and accurate pricing of barrier options under Lévy processes. J. Finance Stoch., 2009, 13(4), pp. 531–562.

    Article  MATH  Google Scholar 

  29. Kudryavtsev O. Advantages of the Laplace transform approach in pricing first touch digital options in Lévy-driven models. Boletín de la Sociedad Matemática Mexicana, 2016, 22(2), pp. 711–731.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kudryavtsev O.E. Approximate Wiener-Hopf factorization and Monte Carlo methods for Lévy processes” Theory of Probability & Its Applications, 2019, 64(2), pp. 186–208.

    Google Scholar 

  31. Kuznetsov A., Kyprianou A.E., Pardo J.C., van Schaik, K. A Wiener-Hopf Monte Carlo simulation technique for Lévy process. Ann. App. Probab. 2011, 21(6), pp. 2171–2190.

    MATH  Google Scholar 

  32. Lipton A. Assets with jumps. Risk Mag., 2002, 15, pp. 149–153.

    Google Scholar 

  33. Liu S., Borovykh A., Grzelak L., Oosterlee C.W. A neural network-based framework for financial model calibration. Journal of Mathematics in Industry, 2019, 9(9), pp. 1–9.

    MathSciNet  MATH  Google Scholar 

  34. Levendorskiĭ S. Pricing of the American put under Lévy processes. International Journal of Theoretical and Applied Finance, 2004, 7(3), pp. 303–335.

    Article  MathSciNet  MATH  Google Scholar 

  35. Madan D.B., Carr P., Chang E. C. The variance Gamma process and option pricing. European Finance Review, 1998, 2, pp. 79–105.

    Article  MATH  Google Scholar 

  36. Merton R. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ., 1976, 3, pp. 125–144.

    Article  MATH  Google Scholar 

  37. Sato K.-I. Lévy processes and infinitely divisible distributions. 1999. Cambridge Univer. Press, Cambridge.

  38. Shiryaev A. N. Part 1. Facts. Models, Essentials of Stochastic Finance, Adv. Ser. Stat. Sci. Appl. Probab., 1999, 3, World Sci. Publ., River Edge, NJ.

Download references

Funding

This work is supported by Russian Science Foundation Grant No. 23-21-00474, https://rscf.ru/project/23-21-00474/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Kudryavtsev.

Ethics declarations

Ethical conduct

Not applicable

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtsev, O., Danilova, N. APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS TO SIMULATING LÉVY PROCESSES. J Math Sci 271, 421–433 (2023). https://doi.org/10.1007/s10958-023-06580-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06580-1

Keywords

Navigation