Skip to main content
Log in

Mathematical Modeling and Polarimetry of the Thermal Stressed State of a Partially Transparent Solid Subjected to the Action of Thermal Radiation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

By using the method of modulation polarimetry and the developed model of thermomechanics of partially transparent solids, we study the kinetics and dynamics of temperature and stresses in a quartz sample in the form of a parallelepiped. The efficiency of the proposed heat-transfer model used to describe the thermal state is experimentally confirmed. In view of the satisfactory agreement between the experimental and computed characteristics of the stress state, we make a conclusion concerning the applicability of the proposed mathematical model and the method of modulation polarimetry in two directions for testing the stress state of materials and the evaluation of their physical constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. K. Aben, Integral Photoelasticity [in Russian], Valgus, Tallinn (1975).

  2. A. G. Blokh, Ya. A. Zhuravlev, and L. N. Ryzhkov, Radiation Heat Exchange. A Handbook [in Russian], Énergoatomizdat, Moscow (1991).

  3. M. Brukhal’, R. Terlets’kyi, and O. Fundak, “A method for the numerical solution of nonlinear problems of heat transfer in bodies of different transparency for thermal radiation,” Visn. Lviv. Univ., Ser. Prykl. Mat. Inform., Issue 13, 59–71 (2007).

  4. A. R. Hachkevych, R. F. Terletskii, and M. B. Brukhal’, “Some problems of mathematical modeling in thermomechanics of bodies of various transparencies subjected to thermal irradiation,” Mat. Met. Fiz.-Mekh. Polya., 51, No. 3, 202–219 (2008); English translation: J. Math. Sci., 165, No 3, 403–425 (2010); https://doi.org/10.1007/s10958-010-9808-1.

  5. О. R. Hachkevych, R. F. Terletskii, and М. B. Brukhal’, “Modeling and investigation of thermal and stressed states in an irradiated system of layers with different transparencies separated by nonabsorbing media,” Mat. Met. Fiz.-Mekh. Polya., 60, No. 4, 124–136 (2017); English translation: J. Math. Sci., 247, No. 1, 157–172 (2020); https://doi.org/10.1007/s10958-020-04794-1.

  6. О. R. Hachkevych, R. F. Terlets’kyi, and T. L. Kurnyts’kyi, Mechanothermodiffusion in Partially Transparent Bodies, in: Ya. Yo. Burak and R. M. Kushnir (editors), Modeling and Optimization in Thermomechanics of Conducting Inhomogeneous Bodies [in Ukrainian], Vol. 2, Spolom, Lviv (2007).

  7. O. R. Hachkevych, R. F. Terlets’kyi, Yu. R. Sosnovyi, and M. B. Brukhal’, “Mechanical behavior of cooled bodies with regard for the emission of heat energy,” Fiz.-Khim. Mekh. Mater., 46, No. 1, 42–50 (2010); English translation: Mater. Sci., 46, No. 1, 47–55 (2010).

  8. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, McGraw Hill, New York (1972).

    Google Scholar 

  9. A. E. Sheidlin (editor), Radiant Properties of Solid Materials. A Handbook [in Russian], Énergiya, Moscow (1974).

  10. A. D. Kovalenko, Foundations of Thermoelasticity [in Russian], Naukova Dumka, Kiev (1970).

  11. G. S. Landsberg, Optics [in Russian], Gostekhteorizdat, Moscow (1957).

  12. A. V. Luikov, Analytical Heat Diffusion Theory, Academic Press, New York (1968).

    Google Scholar 

  13. L. S. Maksimenko, I. E. Matyash, I. A. Minailova, O. N. Mishchuk, S. P. Rudenko, and B. K. Serdega, “Modulation Stokespolarimetry of amplitude-phase characteristics of the surface plasmon–polariton resonance,” Optika Spektroskop. Fiz. Optika, 109, No. 5, 870–875 (2010).

    Google Scholar 

  14. I. E. Matyash, I. A. Minailova, O. N. Mishchuk, and B. K. Serdega, “Kinetics and dynamics of birefringence induced by heat flux in glass in the image of modulation polarimetry,” Fiz. Tverd. Tela , 55, No. 5, 1003–1010 (2013).

    Google Scholar 

  15. I. E. Matyash, I. A. Minailova, O. N. Mishchuk, and B. K. Serdega, “Modulation polarimetry of thermoelasticity induced by the thermal radiation in glass,” Fiz. Tverd. Tela, 56, No. 7, 1439–1445 (2014).

    Google Scholar 

  16. W. Nowacki, Thermoelasticity, Pergamon Press, Oxford (1962).

    MATH  Google Scholar 

  17. N. A. Rubtsov, Radiation Heat Exchange in Continua [in Russian], Nauka, Novosibirsk (1984).

  18. B. K. Serdeha, Modulation Polarimetry [in Ukrainian], Naukova Dumka, Kyiv (2011).

  19. R. F. Terlets’kyi and M. B. Brukhal’, “Nonstationary heat exchange and stressed state in the irradiated system of layers with different transparencies,” Fiz.-Khim. Mekh. Mater., 52, No. 4, 79–85 (2016); English translation: Mater. Sci., 52, No. 4, 533–541 (2017); https://doi.org/10.1007/s11003-017-9987-8.

  20. R. F. Terlets’kyi, M. B. Brukhal’, and Yu. V. Nemirovskii, “Modeling and investigation of the thermomechanical behavior of heat–sensitive bodies with regard for the influence of thermal radiation,” Mat. Met. Fiz.-Mekh. Polya., 56, No. 2, 212–224 (2013); English translation: J. Math. Sci., 203, No. 2, 265–278 (2014); https://doi.org/10.1007/s10958-014-2106-6.

  21. R. F. Terletskii, O. P. Turii, and M. B. Brukhal’, “Problems of thermomechanics for irradiated bodies,” Teor. Prikl. Mekh., Issue 4(50), 30–37 (2012).

  22. Ya. A. Fofanov, I. V. Pleshakov, and I. M. Sokolov, “Detection of nonstationary polarization responses in the optical and radio bands,” Nauch. Priborostr., 20, No. 2-3, 202–219 (2010).

    Google Scholar 

  23. Ch. A. Wert and R. M. Thomson, Physics of Solids, McGraw-Hill, New York (1964).

    Google Scholar 

  24. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland Publ. Co., Amsterdam (1977).

    Google Scholar 

  25. V. F. Chekurin, “Integral photoelasticity relations for inhomogeneously strained dielectrics,” Math. Model. Comput., 1, No. 2, 144–155 (2014).

    Article  MathSciNet  Google Scholar 

  26. J. W. Dally and W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York (1991).

    Google Scholar 

  27. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics, Dover Publ., London (1990).

    MATH  Google Scholar 

  28. S. N. Jasperson and S. E Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum., 40, No. 6, 761–767 (1969); https://doi.org/10.1063/1.1684062.

    Article  Google Scholar 

  29. G. S. Schajer, Practical Residual Stress Measurement Methods, J. Wiley & Sons, New York (2013).

    Book  Google Scholar 

  30. M. Schmidt, A. Schutze, and S. Seelecke, “Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span,” APL Mater., 4, No. 6, 064107 (2016); https://doi.org/10.1063/1.4953433.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Terlets’kyi.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 63, No. 4, pp. 81–95, October–December, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachkevych, O.R., Matyash, I.Y., Minaylova, I.A. et al. Mathematical Modeling and Polarimetry of the Thermal Stressed State of a Partially Transparent Solid Subjected to the Action of Thermal Radiation. J Math Sci 273, 982–998 (2023). https://doi.org/10.1007/s10958-023-06559-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06559-y

Keywords

Navigation