Skip to main content
Log in

A Novel Method for the Numerical Solution of a Hybrid Inverse Problem of Electrical Conductivity Imaging

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A novel method for the numerical solution of a hybrid (coupled physics) inverse problem is proposed. Based on a regularized weighted mean curvature flow equation, this method can be considered as an alternative to the variational approach to solving weighted least gradient Dirichlet problems arising in electrical conductivity imaging, in particular, in Current Density Impedance Imaging (CDII). Utilizing the Sternberg–Ziemer theory, convergence of regularized solutions to a unique function of weighted least gradient is established. The numerical study is conducted to demonstrate the practicability and computational effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion II,” SIAM J. Numer. Anal., 29, 845–866 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bal, “Hybrid inverse problems and internal measurements,” Inside Out II: MSRI Publications, 60, 325–364 (2012).

    MATH  Google Scholar 

  3. M. Benzi and M. Tuma, “A comparative study of sparse approximate inverse preconditioners,” Appl. Num. Math., 30, 305–340 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Benzi, “Preconditioning techniques for large linear systems: A survey,” J. Comp. Phys., 182, 418–477 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. H. Bramble, B. E. Hubbard, and T. Vidar, “Convergence estimates for essentially positive type discrete Dirichlet problem,” Math. Comput., 23, No. 102, 695–709 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. G. Chen, Y. Giga, and S. Goto, “Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,” J. Diff. Geom., 33, 749–786 (1991).

    MathSciNet  MATH  Google Scholar 

  7. M. G. Crandall, H. Ishi, and P. L. Lions, “Users guide to viscosity solutions of second order partial differential equations,” Bull. Amer. Math. Soc., 27, 1–67 (1992).

    Article  MathSciNet  Google Scholar 

  8. L. C. Evans and J. Spruck, “Motion of level sets by mean curvature. I,” J. Differ. Geom., 33, 635–681 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. C. Evans and J. Spruck, “Motion of level sets by mean curvature. III,” J. Geom. Anal., 2, 121–150 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. C. Evans and J. Spruck, “Motion of level sets by mean curvature. IV,” J. Geom. Anal., 5, 77–114 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations, 2nd ed., Springer-Verlag, New York, (2001).

    MATH  Google Scholar 

  12. R. Jerrard, A. Moradifam, and A. Nachman, “Existence and uniqueness of minimizers of general least gradient problems,” J. Reine und Angew. Math., 734, 71–97 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. S. Jovanovipc and E. Sűli, Analysis of Finite Difference Scheme For Linear Partial Differential Equations With Generalized Solutions, Springer, London, (2014).

    Google Scholar 

  14. S. Handlovičova, K Mikula, and F. Sgallari, “Semi-implicit complimentary volume scheme for solving level set like equations in image processing and curve evolution,” Numer. Math., 23, 675–695 (2003).

  15. J. Kačur and K. Mikula, “Solution of nonlinear diffusion appearing in image peocessing,” Appl. Numer. Math., 17, 47–59 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kim, O. Kwon, J. K. Seo et al., “On a nonlinera partial differential equation arising in magnetic resonance electrical impedance tomography,” SIAM J. Math. Anal., 34, 511–526 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Qusilinear Equations of Parabolic Type, AMS, Providence, R.I., (1968).

    Book  Google Scholar 

  18. O. A. Ladyzhenskaya, “Solution of the first boundary problem in the large for quasi-linear parabolic equations,” Trudy Moscov. Mat. Obšč., 7, 149–177 (1958).

    MathSciNet  Google Scholar 

  19. A. Lichnewsky and R. Temam, “Pseudosolutions of the time-dependent minimal surface problem,” J. Differ. Eq., 30, 340–364 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Moradifam, A. Nachman, and A. Timonov, “A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data,” Inverse Problems, 28, 084003, (2012).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Moradifam, A. Nachman, and A. Tamasan, “Uniqueness of minimizers of weighted least gradient problems arising in hybrid inverse problems,” Calculus of Variations and PDEs, 57, (2018).

  22. A. Nachman, A. Tamasan, and A. Timonov, “Conductivity imaging with a single measurements of boundary and interior data,” Inverse Problems, 23, 2556–2563 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Nachman, A. Tamasan, and A. Timonov, “Recovering the conductivity from a single measurement of interior data,” Inverse Problems, 25, 035014, (2009).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Nachman, A. Tamasan, and A. Timonov, “Current Density Impedance Imaging,” Contemp. Math., 25, 135–149 (2010).

    MATH  Google Scholar 

  25. A. Nachman, A. Tamasan, and A. Timonov, “Reconstruction of planar conductivities in subdomains from incomplete data,” SIAM J. Appl. Math., 70, 3342–3362 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Nachman, A. Tamasan, and J. Veras, “A weighted minimum gradient problem with complete electrode model boundary conditions for conductivity imaging,” SIAM J. Appl. Math., 76, 1321–1343 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. M. Oberman, “A convergent monotone difference scheme for motion of level sets by mean curvature,” Numer. Math., 99, 365–379 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Osher and J. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys., 79, 12–49 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Rothe, “Zweidimensionale parabolishe Randwertaufgaben als Grenzfall eidimensionaler Randwertaufgaben,” Math. Ann., 102, 650–670 (1930).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. A. Samarskii, “On the convergence and accuracy of homogeneous difference schemes for one-dimensional and multidimensional parabolic equations,” USSR Comp. Math. Math. Phys., 2, No, 4, 654–696 (1963).

  31. A. A. Samarskii and I. V. Fryazinov, “On finite-difference schemes for solving the Dirichlet problem for an elliptic equation with variable coefficients in an arbitrary region,” USSR Comp. Math. Math. Phys., 11, No. 2, 109–139 (1971).

    Article  Google Scholar 

  32. A. A. Samarskii, The Theory of Difference Schemes, Marcell Decker Inc., New York, (2001).

    Book  MATH  Google Scholar 

  33. J. Schauder, “Über lineare elliptische Differentialgleichungen zweiter Ordnung,” Math. Zeitschr., 38, No. 2, 257–283 (1934).

    Article  MathSciNet  MATH  Google Scholar 

  34. G. C. Scott, M. L. Joy, R. L. Armstrong, et. al., “Measirement of nonuniform current density by magnetic resonance,” IEEE Trans. Med. Imag., 10, 362–374 (1991).

  35. J. Sethian, “Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws,” J. Differ. Geom., 31, 131-161 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Sternberg and W. P. Ziemer, “Generalized motion by curvature with a Dirichlet condition,” J. Differ. Eq., 114, 80–600 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Tamasan, A. Timonov, and J. Veras, “Stable reconstruction of regular 1-harmonic maos with a given trace at the boundary,” Appl. Anal., 94, No. 6, 1098–1115 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Tamasan, and A. Timonov, “A regularized weighted least gradient problem for conductivity imaging,” Inverse Problems, 045006, (2019).

  39. A. Timonov, “Numerical solution of a regularized weighted mean curvature flow problem for electrical conductivity imaging,” SIAM J. Sci. Comput., 41, No. 5, B1137–B1154 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  40. T. D. Ventzel, “The first boundary problem and the Cauchy problem for quasi-linear parabolic equations with several space variables,” Mat. Sb. N. S., 41, No. 83, 499–520 (1957).

    MathSciNet  Google Scholar 

  41. N. J. Walkington, “Algorithms for computing motion by mean curvature,” SIAM J. Numer. Anal., 33, 2215–2238 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Timonov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 499, 2021, pp. 105–128.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timonov, A. A Novel Method for the Numerical Solution of a Hybrid Inverse Problem of Electrical Conductivity Imaging. J Math Sci 273, 511–526 (2023). https://doi.org/10.1007/s10958-023-06517-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06517-8

Navigation