Skip to main content
Log in

On weak convergence of stochastic differential equations with irregular coefficients

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

One-dimensional Ito stochastic differential equations and stochastic differential equations with local time that depend on a small parameter ε and have irregular coefficients (for example, the unlimited drift coefficient or the non-Lipschitz diffusion coefficient) have been considered. The available results concerning the conditions for a mutually univocal correspondence between stochastic Ito equations and stochastic equations with local time were generalized. The weak convergence of the solutions of those equations at ε → 0 were analyzed. The form of the coefficients for the limiting process was obtained. The necessary and sufficient conditions for the weak convergence of the solutions of those equations to the limit random process were proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes. New York, Springer-Verlag, 1979.

    MATH  Google Scholar 

  2. S. Ya. Makhno, “Convergence of Diffusion Processes,” Ukrainian Math. Journal, 44(2), 249–254 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. G. L. Kulinich, “On Necessary and Sufficient Conditions for Convergence of Solutions to One-Dimensional Stochastic Diffusion Equations with a Nonregular Dependence of the Coefficients on a Parameter,” Theory Probab. Appl., 27(4), 856–862 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. I. Portenko, Generalized diffusion processes. Providence, RI, American Mathematical Society, 1990.

    Book  MATH  Google Scholar 

  5. N. I. Portenko, “Generalized diffusion processes,” Proceedings of the Third Japan–USSR Symposium on Probability Theory. Lecture Notes in Mathematics, v. 550. Berlin, Heidelberg, Springer, 500–523 (1976).

  6. S. Ya. Makhno, “Convergence of solutions of one-dimensional stochastic equations,” Theory Probab. Appl., 44(3), 595–610 (2000).

    Article  MathSciNet  Google Scholar 

  7. S. Ya. Makhno, “Limit theorem for one-dimensional stochastic equations,” Theory Probab. Appl., 48(1), 164–169 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. M. Harrison and L. A. Shepp, “On skew Brownian motion,” Ann. Probab., 9(2), 309–313 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  9. J.-F. Le Gall, “One dimensional stochastic differential equations involving the local times of the unknown process,” Lecture Notes in Mathematics, 1095, 51–82 (1983).

    Article  MathSciNet  Google Scholar 

  10. K. Ito and H. McKean, “Brownian motions on a half line,” Illinois J. Math., 7(2), 181–231 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  11. H.-J. Engelbert and W. Schmidt, “Strong Markov continuous local martingales and solutions of onedimensional stochastic differential equations III,” Math. Nachr., 151, 149–197 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Ya. Makhno, “A limit theorem for stochastic equations with the local time,” Theory of Probability and Mathematical Statistics, 64, 123–128 (2002).

    MathSciNet  Google Scholar 

  13. S. Ya. Makhno, “The limit stochastic equation changes type,” Theory of Stochastic Processes, 11(27)(3–4), 104–109 (2005).

    MathSciNet  MATH  Google Scholar 

  14. S. Ya. Makhno, “Stochastic equations. Limit theorems.” In: Problems and methods: mathematics, mechanics, cybernetics. V. 6. Kyiv, Naukova dumka, 2012.

  15. S. Ya. Makhno, “Diffusion processes in a composite environment,” Theory of Probability and Mathematical Statistics, 94, 137–149 (2017).

    Article  MATH  Google Scholar 

  16. S. Ya. Makhno, “One-dimensional stochastic equations in layered media with semi-permeable barriers,” Random Operators and Stochastic Equations, 24(3), 165–171 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. I. H. Krykun, “Limit theorem for solution of stochastic equations with local time,” Proceedings of the Inst. of Appl. Math. & Mech. of NAS of Ukraine, 10, 120–130 (2005).

    MathSciNet  Google Scholar 

  18. I. H. Krykun, “Large deviation principle for stochastic equations with local time,” Theory of Stochastic Processes, 15 (31)(2), 140–155 (2009).

  19. I. H. Krykun, “Functional law of the iterated logarithm type for a skew brownian motion,” Theory of Probability and Mathematical Statistics, 87, 79–98 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. I. G. Krykun, “Convergence of oblique Brownian motions with local times at several points that converge to one,” Ukrain. Mathem. Bul., 13(2), 213–223 (2016).

    Google Scholar 

  21. I. H. Krykun, “Convergence of skew Brownian motions with local times at several points that are contracted into a single one,” Journal of Mathematical Sciences, 221(5), 671–678 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. G. Krykun and S. Ya. Makhno, “The Peano phenomenon for the Ito equations,” Ukrain. Mathem. Bul., 10(1), 87–109 (2013).

    MathSciNet  MATH  Google Scholar 

  23. I. G. Krykun and S. Ya. Makhno, “The Peano phenomenon for Ito equations,” Journal of Mathematical Sciences, 192(4), 441–458 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes. Berlin, Heidelberg, New York, Springer-Verlag, 1987.

    Book  MATH  Google Scholar 

  25. P. E. Protter, Stochastic Integration and Differential Equations, 2nd ed. Berlin, Heidelberg, Springer-Verlag, 2005.

    Book  Google Scholar 

  26. A. N. Borodin and P. Salminen, Handbook of Brownian Motion – Facts and Formulae. Basel, Boston, Berlin, Birkhauser, 1996.

    Book  MATH  Google Scholar 

  27. D. Revuz and M. Yor, Continuous martingales and Brownian motion. Berlin, Heidelberg, New York, Springer, 1990.

    MATH  Google Scholar 

  28. I. I. Gikhman and A. V. Skorokhod, Stochastic differential equations and their applications [in Russian]. Kyiv, Naukova Dumka, 1982.

    MATH  Google Scholar 

  29. A. Yu. Veretennikov, “On the Strong Solutions of Stochastic Differential Equations,” Theory Probab. Appl., 24(2), 354–366 (1979).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan H. Krykun.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 20, No. 1, pp. 87-106, January-March, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krykun, I.H. On weak convergence of stochastic differential equations with irregular coefficients. J Math Sci 273, 398–413 (2023). https://doi.org/10.1007/s10958-023-06506-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06506-x

Keywords

Navigation