Skip to main content
Log in

On Grunsky norm of univalent functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We establish an intrinsic lower bound for the Grunsky norm of univalent functions in the disk. This bound sheds light on the intrinsic geometric features of complex analysis and of Teichmüllerv space theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abate and G. Patrizio, “Isometries of the Teichmüller metric,” Ann. Scuola Super. Pisa Cl. Sci., 26(4), 437–452 (1998).

    MATH  Google Scholar 

  2. L. Ahlfors, “An extension of Schwarz’s lemma,” Trans. Amer. Math. Soc., 43, 359–364 (1938).

    MathSciNet  MATH  Google Scholar 

  3. S. Dineen, The Schwarz Lemma. Clarendon Press, Oxford, 1989.

    MATH  Google Scholar 

  4. C. J. Earle, I. Kra, and S. L. Krushkal, “Holomorphic motions and Teichmüller spaces,” Trans. Amer. Math. Soc., 944, 927–948 (1994).

    MATH  Google Scholar 

  5. F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Amer. Math. Soc., Providence, RI, 2000.

    MATH  Google Scholar 

  6. G. M. Goluzin, Geometric Theory of Functions of Complex Variables. Transl. of Math. Monographs, vol. 26, Amer. Math. Soc., Providence, RI (1969).

  7. H. Grunsky, “Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen,” Math. Z., 45, 29–61 (1939).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Heins, “A class of conformal metrics,” Nagoya Math. J., 21, 1–60 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Kra, “The Carathéodory metric on abelian Teichmüller disks,” J. Anal. Math., 40, 129–143 (1981).

    Article  MATH  Google Scholar 

  10. S. L. Krushkal, Quasiconformal Mappings and Riemann Surfaces. Wiley, New York, 1979.

    MATH  Google Scholar 

  11. S. L. Krushkal, “Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings, Comment. Math. Helv., 64, 650–660 (1989).

  12. S. L. Krushkal, “Plurisubharmonic features of the Teichmüller metric,” Publications de l’Institut Mathématique-Beograd, Nouvelle série, 75(89), 119–138 (2004).

    MATH  Google Scholar 

  13. S. L. Krushkal, “Quasiconformal extensions and reflections, Ch 11.” In: Handbook of Complex Analysis: Geometric Function Theory, Vol 2 (R. Kühnau, ed.), Elsevier Science, Amsterdam, pp. 507–553 (2005).

    Chapter  Google Scholar 

  14. S. L. Krushkal, “Strengthened Moser’s conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues,” Central European J. Math., 5(3), 551–580 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. L. Krushkal, “Proof of the Zalcman conjecture for initial coefficients,” Georgian Math. J., 17, 663–681 (2010); Corrigendum, 19, 777 (2012).

  16. S. L. Krushkal, “Strengthened Grunsky and Milin inequalities,” Contemp. Mathematics, 667, 159–179 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. L. Krushkal and R. Kühnau, Quasikonforme Abbildungen - neue Methoden und Anwendungen. Teubner-Texte zur Math., Bd. 54, Teubner, Leipzig, 1983.

  18. S. L. Krushkal and R. Kühnau, “Quasiconformal reflection coefficient of level lines,” Contemp. Math., 553, 155–172 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Kühnau, “Verzerrungss¨atze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen,” Math. Nachr., 48, 77–105 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Kühnau, “Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte und Grunskysche Koeffizientenbedingungen,” Ann. Acad. Sci. Fenn. Ser. AI. Math., 7, 383–391 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Kühnau, “Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit?” Comment. Math. Helv., 61, 290–307 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Kühnau, “Über die Grunskyschen Koeffizientenbedingungen,” Ann. Univ. Mariae Curie-Sklodowska, sect. A, 54, 53–60 (2000).

    MathSciNet  MATH  Google Scholar 

  23. N. A. Lebedev, The Area Principle in the Theory of Univalent Functions [in Russian]. Nauka, Moscow, 1975.

  24. I. M. Milin, Univalent Functions and Orthonormal Systems, Transl. of Mathematical Monographs, vol. 49; transl. of Odnolistnye funktcii i normirovannie systemy, Amer. Math. Soc., Providence, RI, 1977.

  25. D. Minda, “The strong form of Ahlfors’ lemma,” Rocky Mountain J. Math., 17, 457–461 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  26. Chr. Pommerenke, Univalent Functions. Vandenhoeck & Ruprecht, G¨ottingen, 1975.

  27. Yu. G. Reshetnyak, Two-dimensional manifolds of bounded curvature. Geometry, IV, Encyclopaedia Math. Sci. 70, Springer, Berlin, pp. 3–163, 245–250 (1993); transl. from: Two-dimensional manifolds of bounded curvature, Geometry, 4, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, pp. 189, 273–277, 279 (1989).

  28. H. L. Royden, “The Ahlfors-Schwarz lemma: the case of equality,” J. Anal. Math., 46, 261–270 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Schiffer, “Fredholm eigenvalues and Grunsky matrices,” Ann. Polon. Math., 39, 149–164 (1981).

    Article  MathSciNet  Google Scholar 

  30. M. Schiffer and D. Spencer, Functionals of Finite Riemann Surfaces. Princeton Univ. Press, Princeton, 1954.

    MATH  Google Scholar 

  31. K. Strebel, “On the existence of extremal Teichmueller mappings,” J. Analyse Math., 30, 464–480 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  32. I. V. Zhuravlev, Univalent functions and Teichmüller spaces [in Russian]. Inst. of Mathematics, Novosibirsk, preprint, 23 pp., 1979.

  33. O. Teichmüller, “Ein Verschiebungssatz der quasikonformen Abbildung,” Deutsche Math., 7, 336–343 (1944).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Krushkal.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 20, No. 1, pp. 73-86, January-March, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krushkal, S.L. On Grunsky norm of univalent functions. J Math Sci 273, 387–397 (2023). https://doi.org/10.1007/s10958-023-06505-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06505-y

Keywords

Navigation