Skip to main content
Log in

Vibration of Conjugated Shell Systems Under Combined Static Loads

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We propose a mathematical model of vibration of elastic systems formed by conjugated shells of revolution with different geometry in the field of combined static axisymmetric loads. The model is based on the concepts of geometrically nonlinear theory of mean bending and realized within the framework of the classical Kirchhoff–Love theory with the use of contemporary methods of applied mathematics and numerical analysis. The spectral picture of a shell structure with elements of positive, zero, and negative Gaussian curvature is constructed. This picture enables us to detect resonance situations under specific dynamic actions and determine dangerous combinations of static loads in the analysis of stability of the equilibrium states of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Bespalova and N. P. Boreiko, “Vibrations of compound shell systems under subcritical loads,” Prikl. Mekh., 56, No. 4, 27–37 (2020); English translation: Int. Appl. Mech., 56, No. 4, 415–423 (2020); https://doi.org/10.1007/s10778-020-01025-7.

  2. E. I. Bespalova and N. P. Boreiko, “Determination of the natural frequencies of compound anisotropic shell systems using various deformation models,” Prikl. Mekh., 55, No. 1, 44–59 (2019); English translation: Int. Appl. Mech., 55, No. 1, 41–54 (2019); https://doi.org/10.1007/s10778-019-00932-8.

  3. O. I. Bespalova and N. P. Yaremchenko, “Determination of the stress-strain state of conjugated flexible shells of revolution under subcritical loads,” Visn. Kyiv Nats. Univ. T. Shevchenko, Ser. Fiz.-Mat. Nauky, Issue 4, 29–36 (2017).

  4. Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar’, Free Vibrations of Elements of Shell Structures [in Russian], Naukova Dumka, Kiev (1986).

  5. Ya. M. Grigorenko, O. I. Bespalova, and N. P. Boreiko, “Stability of systems composed of the shells of revolution with variable Gaussian curvature,” Mat. Met. Fiz.-Mekh. Polya, 62, No. 1, 127–142 (2019); English translation: J. Math. Sci., 258, No. 4, 527–544 (2021); https://doi.org/10.1007/s10958-021-05564-3.

  6. Ya. M. Grigorenko, A. Ya. Grigorenko, and L. I. Zakhariichenko, “Analysis of influence of the geometrical parameters of elliptic cylindrical shells with variable thickness on their stress-strain state,” Prikl. Mekh., 54, No. 2, 42–50 (2018); English translation: Int. Appl. Mech., 54, No. 2, 155–162 (2018); https://doi.org/10.1007/s10778-018-0867-1.

  7. Y. М. Grigorenko and L. S. Rozhok, “Analysis of the stress state of hollow cylinders with concave corrugated cross sections,” Mat. Met. Fiz.-Mekh. Polya, 58, No. 4, 70–77 (2015); English translation: J. Math. Sci., 228, No. 1, 80–89 (2018); https://doi.org/10.1007/s10958-017-3607-x.

  8. V. G. Karnaukhov and I. F. Kirichok, “Forced harmonic vibrations and dissipative heating-up of viscoelastic thin-walled elements (Review),” Prikl. Mekh., 36, No. 2, 39–63 (2000); English translation: Int. Appl. Mech., 36, No. 2, 174–195 (2000); https://doi.org/10.1007/BF02681993.

  9. S. R. Asemi, A. Farajpour, H. R. Asemi, and M. Mohammadi, “Influence of initial stress on the vibration of double-piezoelectricnanoplate systems with various boundary conditions using DQM,” Phys. E: Low-Dimensional Systems and Nanostructures, 63, 169–179 (2014); https://doi.org/10.1016/j.physe.2014.05.009.

  10. E. Вespalova and G. Urusova, “Vibrations of compound shells of revolution with elliptical toroidal members,” Thin-Walled Struct., 123, 185–194 (2018); https://doi.org/10.1016/j.tws.2017.11.024.

  11. E. Bespalova and G. Urusova, “Vibrations of highly inhomogeneous shells of revolution under static loading,” J. Mech. Mater. Struct., 3, No. 7, 1299–1313 (2008); https://doi.org/10.2140/jomms.2008.3.1299.

    Article  Google Scholar 

  12. S. O. Dailamani and J. G. A. Croll, “Relative importance of horizontal and vertical components of earthquake motion on the responses of barrel vault cylindrical roof shells,” in: Proc. 16th World Conf. on Earthquake Eng. (16WCEE 2017), January 9–13, Santiago, Chile, Paper No. 874 (2017).

  13. Y. C. Fung, E. E. Sechler, and A. Kaplan, “On the vibration of thin cylindrical shells under internal pressure,” J. Aeron. Sci., 24, No. 9, 650–660 (1957); https://doi.org/10.2514/8.3934.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Goodarzi, M. Mohammadi, A. Farajpour, and M. Khooran, “Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation,” J. Solid Mech., 6, No. 1, 98–121 (2014).

    Google Scholar 

  15. Q. Han and F. Chu, “Effect of rotation on frequency characteristics of a truncated circular conical shell,” Arch. Appl. Mech., 83, No. 12, 1789–1800 (2013); https://doi.org/10.1007/s00419-013-0778-x.

    Article  MATH  Google Scholar 

  16. I. Harbaoui, J. B. Casimir, M. A. Khadimallah, and M. Chafra, “A new prestressed dynamic stiffness element for vibration analysis of thick circular cylindrical shells,” Int. J. Mech. Sci., 140, 37–50 (2018); https://doi.org/10.1016/j.ijmecsci.2018.02.046.

  17. L. Hua and K. Y. Lam, “The generalized differential quadrature method for frequency analysis of a rotating conical shell with initial pressure,” Int. J. Numer. Meth. Eng., 48, No. 12, 1703–1722 (2000).

    Article  MATH  Google Scholar 

  18. J.-H. Kang, “Free vibrations of combined hemispherical-cylindrical shells of revolution with a top opening,” Int. J. Struct. Stab. Dynam., 14, No. 1, Art. 1350023 (2014); https://doi.org/10.1142/S0219455413500235.

  19. O. P. Krivenko, “Effect of static loads on the natural vibrations of ribbed shells,” Opir. Mater. Teor. Sporud, 101, 38–44 (2018); https://doi.org/10.32347/2410-2547.2018.101.38-44.

  20. P. Kumar and C. V. Srinivasa, “On buckling and free vibration studies of sandwich plates and cylindrical shells: A review,” J. Thermoplast. Compos. Mater., 33, No. 5, 673–724 (2020); https://doi.org/10.1177/0892705718809810.

    Article  Google Scholar 

  21. T. Mazúch, J. Horacek, J. Trnka, and J. Veselý, “Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement,” J. Sound Vibrat., 193, No. 3, 669–690 (1996); https://doi.org/10.1006/jsvi.1996.0307.

    Article  Google Scholar 

  22. M. Mohammadimehr, M. Moradi, and A. Loghman, “Influence of the elastic foundation on the free vibration and buckling of thinwalled piezoelectric-based FGM cylindrical shells under combined loadings,” J. Solid Mech., 6, No. 4, 347–365 (2014).

    Google Scholar 

  23. I. Nachtigall, N. Gebbeken, and J. L. Urrutia-Galicia, “On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base,” Eng. Struct., 25, No. 2, 201–213 (2003); https://doi.org/10.1016/S0141-0296(02)00135-9.

    Article  Google Scholar 

  24. M. S. Qatu, “Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: Laminated composite shells,” Appl. Mech. Rev., 55, No. 4, 325–350 (2002); https://doi.org/10.1115/1.1483079.

    Article  Google Scholar 

  25. M. S. Qatu, E. Asadi, and W. Wang, “Review of recent literature on static analyses of composite shells: 2000–2010,” Open J. Compos. Mater., 2, No. 3, 61–86 (2012); https://doi.org/10.4236/ojcm.2012.23009.

    Article  Google Scholar 

  26. Y. Qu, S. Wu, Y. Chen, and H. Hua, “Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach,” Int. J. Mech. Sci., 69, 72–84 (2013); https://doi.org/10.1016/j.ijmecsci.2013.01.026.

  27. F. Sabri and A. A. Lakis, “Hydroelastic vibration of partially liquid-filled circular cylindrical shells under combined internal pressure and axial compression,” in: Proc. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf. (May 4–7 2009), Palm Springs, California (2009); https://doi.org/10.2514/6.2009-2646.

  28. A. Shekari, F. A. Ghasemi, and K. Malekzadehfard, “Free damped vibration of rotating truncated conical sandwich shells using an improved high-order theory,” Lat. Amer. J. Solids Struct., 14, No. 12, 2291–2323 (2017); https://doi.org/10.1590/1679-78253977.

    Article  Google Scholar 

  29. A. H. Sofiyev and N. Kuruoglu, “Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressures,” Thin-Walled Struct., 78, 121–130 (2014); https://doi.org/10.1016/j.tws.2014.01.009.

  30. S. Sun, S. Chu, and D. Q. Cao, “Vibration characteristics of thin rotating cylindrical shells with various boundary conditions,” J. Sound Vibrat., 331, No. 18, 4170–4186 (2012); https://doi.org/10.1016/j.jsv.2012.04.018.

    Article  Google Scholar 

  31. Z. Su and G. Jin, “Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method,” J. Acoust. Soc. Amer., 140, No. 5 (2016); https://doi.org/10.1121/1.4967853.

  32. B. Ustundag, On the Free Vibration Behavior of Cylindrical Shell Structures, B. S., Mechanical Engineering, Turkish Naval Academy (2006).

  33. Y. L. Zhang, D. G. Gorman, and J. M. Reese, “Vibration of prestressed thin cylindrical shells conveying fluid,” Thin-Walled Struct., 41, No. 12, 1103–1127 (2003); https://doi.org/10.1016/S0263-8231(03)00108-3.

    Article  Google Scholar 

  34. A. Zingoni, “Liquid-containment shells of revolution: A review of recent studies on strength, stability and dynamics,” Thin-Walled Struct., 87, 102–114 (2015); https://doi.org/10.1016/j.tws.2014.10.016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Boreiko.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 63, No. 3, pp. 5–18, July–September, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, Y.M., Bespalova, O.I. & Boreiko, N.P. Vibration of Conjugated Shell Systems Under Combined Static Loads. J Math Sci 273, 1–16 (2023). https://doi.org/10.1007/s10958-023-06479-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06479-x

Keywords

Navigation