Skip to main content
Log in

Discrete Approximation of Solutions of the Cauchy Problem for a Linear Homogeneous Differential-Operator Equation with a Caputo Fractional Derivative in a Banach Space

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we construct and examine the time-discretization scheme for the Cauchy problem for a linear homogeneous differential equation with the Caputo fractional derivative of order α ∈ (0, 1) in time and containing the sectorial operator in a Banach space in the spatial part. The convergence of the scheme is established and error estimates are obtained in terms of the step of discretization. Properties of the Mittag-Leffler function, hypergeometric functions, and the calculus of sectorial operators in Banach spaces are used. Results of numerical experiments that confirm theoretical conclusions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Abrashina-Zhadaeva and I. A. Timoshchenko, “Finite-difference methods for the fractional diffusion equation in a multidimensional domain,” Differ. Uravn., 49, No. 7, 819–825 (2013).

    MATH  Google Scholar 

  2. A. A. Alikhanov, “Stability and convergence of finite-difference schemes for boundary-value problems for the fractional diffusion equation,” Zh. Vychisl. Mat. Mat. Fiz., 56, No. 4, 572–586 (2016).

    MathSciNet  MATH  Google Scholar 

  3. E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Eindhoven University of Technology, Pleven (2001).

  4. A. B. Bakushinskii, M. M. Kokurin, and M. Yu. Kokurin, “On the complete discretisation scheme for an ill-posed Cauchy problem in a Banach space,” Tr. Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk, 18, No. 1, 96-108 (2012).

    MATH  Google Scholar 

  5. A. B. Bakushinskii, M. M. Kokurin, and M. Yu. Kokurin, “On one class of difference schemes for solving an ill-posed Cauchy problem in a Banach space,” Zh. Vychisl. Mat. Mat. Fiz., 52, No. 3, 483–498 (2012).

    MathSciNet  MATH  Google Scholar 

  6. H. Bateman, A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vol. I. The hypergeometric Function. Legendre Functions., McGraw-Hill, New York (1953).

  7. M. M. Dzhrbashyan, Integral Transforms and Representations of Functions in the Complex Domain [in Russian], Nauka, Moscow (1966).

  8. M. Haase, The Functional Calculus for Sectorial Operators, Birkhäuser, Basel (2006).

    Book  MATH  Google Scholar 

  9. B. Jin, R. Lazarov, Z. Zhou, “Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data,” SIAM J. Sci. Comput., 38, No. 1, A146–A170 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin–Heidelberg–New York (1966).

  11. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  12. A. N. Kochubei, “Cauchy problem for fractional evolutionary equations,” Differ. Uravn., 25, No. 8, 1359–1368 (1989).

    Google Scholar 

  13. M. M. Kokurin, “Improvement of estimates of the convergence rate for some classes of finite-difference schemes for solving an ill-posed Cauchy problem,” Vychisl. Met. Program., 14, No. 1, 58–76 (2013).

    Google Scholar 

  14. M. M. Kokurin, “The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 12, 19–35 (2013).

  15. M. M. Kokurin, “Difference schemes for solving the Cauchy problem for a second-order operator differential equation,” Zh. Vychisl. Mat. Mat. Fiz., 54, No. 4, 569–584 (2014).

    MathSciNet  MATH  Google Scholar 

  16. M. M. Kokurin, “Necessary and sufficient conditions for the polynomial convergence of the quasi-reversibility and finite-difference methods for an ill-posed Cauchy problem with exact data,” Zh. Vychisl. Mat. Mat. Fiz., 55, No. 12, 2027–2041 (2015).

    MathSciNet  MATH  Google Scholar 

  17. M. M. Kokurin, “Estimates of the convergence rate and discrepancy of difference schemes for solving second-order linear ill-posed Cauchy problem,” Vychisl. Met. Program., 18, 322–347 (2017).

    Google Scholar 

  18. M. M. Lafisheva and M. Kh. Shkhanukov-Lafishev, “Locally one-dimensional difference scheme for the fractional diffusion equation,” Zh. Vychisl. Mat. Mat. Fiz., 48, No. 10, 1878–1887 (2008).

    MathSciNet  MATH  Google Scholar 

  19. C. Li and F. Zeng, “The finite difference methods for fractional ordinary differential equations,” Numer. Funct. Anal. Optim., 34, No. 2, 149–179 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. Zh. Liu, M. Lee, C. Pastor, and S. I. Piskarev, “On appoximation of fractional resolving families,” Differ. Uravn., 50, No. 7, 937–946 (2014).

    Google Scholar 

  21. C. Lubich, “Discretized fractional calculus,” SIAM J. Math. Anal., 17, No. 3, 704–719 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. I. Piskarev, “Estimates of the convergence rate for solutions of ill-posed problems for evolutionary equations,” Izv. Akad. Nauk SSSR. Ser. Mat., 51, No. 3, 676-687 (1987).

    MATH  Google Scholar 

  23. A. Yu. Popov and A. M. Sedletskii, “Splitting of roots of the Mittag-Leffler functions,” Sovr. Mat. Fundam. Napravl., 40, 3–171 (2011).

  24. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Special Functions. Additional Chapters [in Russian], Fizmatlit, Moscow (2003).

  25. E. I. Radzievskaya and G. V. Radzievskii, “The remainder of the Taylor formula of a holomorphic functions can be written in the Lagrange form,” Sib. Mat. Zh., 44, No. 2, 402–414 (2003).

    Article  Google Scholar 

  26. K. Sakamoto and M. Yamamoto, “Initial-value and boundary-value problems for fractional diffusion-wave equations and applications to some inverse problems,” J. Math. Anal. Appl., 382, 426-447 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  27. F. I. Taukenova and M. Kh. Shkhanukov-Lafishev, “Finite-difference methods of solving boundary-value problems for fractional differential equations,” Zh. Vychisl. Mat. Mat. Fiz., 46, No. 10, 1871–1881 (2006).

    MathSciNet  Google Scholar 

  28. V. A. Trenogin, Functional Analysis [in Russian], Fizmatlit, Moscow (2007).

  29. M. M. Vainberg, Variational Method and Method of Monotonic Operators in the Theory of Non-linear Equations [in Russian], Nauka, Moscow (1972).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kokurin.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 175, Proceedings of the XVII All-Russian Youth School-Conference “Lobachevsky Readings-2018,” November 23-28, 2018, Kazan. Part 1, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokurin, M.M. Discrete Approximation of Solutions of the Cauchy Problem for a Linear Homogeneous Differential-Operator Equation with a Caputo Fractional Derivative in a Banach Space. J Math Sci 272, 826–852 (2023). https://doi.org/10.1007/s10958-023-06476-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06476-0

Keywords and phrases

AMS Subject Classification

Navigation