Skip to main content
Log in

Well-posedness and Boundary Controllability of a type Boussinesq equation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The well-posedness and the boundary controllability of a type of Boussinesq equation on the bounded domain [0, L] are studied. Initially the well-posedness is proved when \(H^s[0,L]\) for \(s\ge 0\) for the linear equation, analyzing the boundary integral solution in an explicit form together with the periodic problem for the same equation, the condition of \(\lambda \le 0\) must be imposed. The \(L^2\)-Linear boundary controllability when the control is in one of the left boundary condition is probed by moment method. In the cases of full-nonlinality some results are stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(f(x,t)= \sum _m e^{i(mx+m^2t}f_m(t)\) and we denote \(\hat{f}(m,n)= \hat{f}_m(n-m^2)\) holds

    $$\begin{aligned} \Vert f\Vert _{L^4}\lesssim \left( \sum _{m,n\in \mathbb {Z}} \left( |n-m^2| +1\right) ^{\frac{3}{4}}|\hat{f}(m,n)|^2 \right) ^{\frac{1}{2}}. \end{aligned}$$
  2. The function \(\theta \in C_0^{\infty }(\mathbb {R})\), with \(0\le \theta \le 1\), \(\theta \equiv 1\) in \([-1,1]\), supported on \([-2,2]\) and for \(0<T<1\), let us define \(\theta _T(t)=\theta (\frac{t}{T}).\)

References

  1. Bourgain J. Fourier Transform Restriction phenomena for certain lattice subsets and applications to nonlinear evolution equation. Part I: Schrödinger equation. Geometric and Functional Analysis. Vol. 3 No 2, 1993, 107-156.

  2. Boussinesq, J. Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal equation, J. Math. Pures Appl., 17 (1872), 55-108.

    MathSciNet  MATH  Google Scholar 

  3. Bona, J., Sun S., Zhang B-Y. Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equation. J. Math Pures Appl., 109 (2018), 1-66.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cerpa, E. Null Controllability and stabilization of the linar Kuramoto-Sivashinsky equation. Communications on Pure and Applied Analysis. Vol 9, N.1, 2010, 91-102.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cerpa E., P. Guzmán, A. Mercado, On the control of the linear Kuramoto-Sivashinsky equation, ESAIM Control Optim. Calc. Var., Vol. 23, 2017. 165-194.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerpa E., A. Mercado, A. Pazoto, Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control, SIAM J. Control Optim., Vol. 53, No. 3, 2015, t 1543-1568.

  7. Cerpa E., Rivas I., On the controllability of the Boussinesq equation in low regularity. J. Evol. Equ. 18, 2018, 1501-1519.

    Article  MathSciNet  MATH  Google Scholar 

  8. Crépeau E. Exact controllability of the Boussinesq equation on a bounded domain. Differential Integral Equations, 16(3):303-326, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang Y.F, Grillakis G. Existence and uniqueness for Boussinesq type equation on a circle. Commun. in Partial Differential Equations, Vol 21, 7-8, 1996, 1253-1277.

    Article  MathSciNet  MATH  Google Scholar 

  10. Farah L. G.. Local solutions in Sobolev spaces with negative indices for the “good” Boussinesq equation. Comm. Partial Differential Equations, 34, 1-3. 52-73, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  11. Farah L. G., Scialom M. On the periodic “good” Boussinesq equation. Proc. Amer. Math. Soc., 138(3):953-964, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  12. Fattorini H. O. and Russell D. L. Exact controllability theorems for linear parabolic equation in one space dimension, Arch. Rat. Mech. Anal., 43,1971. 272-292.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang Y-F and Grillakis M.G. Existence and uniqueness for Boussinesq type equations on a circle. Comm. Partial Differential Equations, 21(7-8):1253-1277, 1996.

  14. Guzman P. Contribution to the control of high-order partial differential equation. Universidad Técnica Federico Santa María. Ph. D. Thesis. 2017.

  15. Ingham, A. E. Some trigonometrical inequalities with applications to the theory of series. Math. A. Vol. 41, No. 1, 1938, 367-379.

    MathSciNet  MATH  Google Scholar 

  16. Kishimoto N. Sharp local well-posedness for the “good” Boussinesq equation. J. Differential Equations, 254,6, 2013, 2393-2433.

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, J., and Zhang, B-Y and Zhang, Z. A nonhomogeneous boundary value problem for the Kuramoto-Sivashinsky equation in a quarter plane. Math. Methods Appl. Sci. 40, 2017, N 15, Pag 5619–5641.

  18. Linares F. Global existence of small solutions for a generalized Boussinesq equation. J. Differential Equations, 106, 2, 257-293, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. Li S.H., Rivas I. Zhang B.Y. A Nonhomogeneous Boundary Value Problem for the Boussinesq Equation on a Bounded Domain. Vol 49, 3. 2016. 238-258.

    Google Scholar 

  20. Lions J.L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, vol. 1, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

    Book  MATH  Google Scholar 

  21. Kuramoto Y. and Tsuzuki T. On the formation of dissipative structures in reaction-diffusion systems: Reductive perturbation approach. Prog. Theor. Phys. 54. 1975. 687-699.

    Article  Google Scholar 

  22. Kuramoto Y. and Tsuzuki T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55 (1976) 356-369.

    Article  Google Scholar 

  23. Michelson D.M., Sivashinsky G.I., Nonlinear analysis of hydrodynamic instability in laminar flames II: Numerical experiments. Acta Astronaut. 4,1977, 1207-122.

    Article  MathSciNet  MATH  Google Scholar 

  24. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer-Verlag: New York, 1983.

    MATH  Google Scholar 

  25. Oh S., Stefanov A.. Improved local well-posedness for the periodic “good” Boussinesq equation, Journal of Differential Equations, 254(10)(2013), 4047-4065.

    Article  MathSciNet  MATH  Google Scholar 

  26. Sivashinsky G.I., Nonlinear analysis of hydrodynamic instability in laminar flames I: Derivation of basic equations. Acta Astronaut. 4 (1977) 1177-1206.

    Article  MathSciNet  MATH  Google Scholar 

  27. Tucsnak M. Weiss G. Observation and Control for Operator Semigroups. 2009. Birkh auser Verlag.

  28. Tsutsumi M., Matahashi T. On the Cauchy problem for the Boussinesq type equation. Math. Japon., 36(2):371-379, 1991

    MathSciNet  MATH  Google Scholar 

  29. Xue R. The initial-boundary value problem for the “good” Boussinesq equation on the bounded domain. J. Math. Anal. Appl., 343(2):975-995, 2008.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This article was supported by the internal project at Universidad del Valle, CI 71189.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to the study conception and design. Material preparation, data collection, and analysis were performed by the author. The drafts of the manuscript were written by Ivonne Rivas, who checked, read, and approved the final manuscript.

Corresponding author

Correspondence to Ivonne Rivas Triviño.

Ethics declarations

Conflict of interest

The author has no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was supported by the internal project at Universidad del Valle with number CI 71189.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas Triviño, I. Well-posedness and Boundary Controllability of a type Boussinesq equation. J Math Sci 271, 255–280 (2023). https://doi.org/10.1007/s10958-023-06426-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06426-w

Keywords

AMS Subject Classifications:

Navigation