Skip to main content
Log in

Boundary-Value Problems for the System of Operator-Differential Equations in Banach and Hilbert Spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We establish necessary and sufficient conditions for the existence of solutions of linear and nonlinear boundary-value problems in Hilbert and Banach spaces and present a convergent iterative procedure for finding the solutions in the nonlinear case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Krein, Linear Differential Equations in Banach Spaces, Amer. Math. Soc., Providence, R.I. (1972).

    Google Scholar 

  2. M. L. Gorbachuk, Boundary-Value Problems for Operator Differential Equations, Springer Netherlands (1991).

    Book  MATH  Google Scholar 

  3. G. E. Ladas and V. Lakshmikantham, Differential Equations in Abstract Spaces, Academic Press, New York-London (1972).

    MATH  Google Scholar 

  4. N. C. Apreutesei, “A boundary value problem for second order differential equations in Hilbert spaces,” Nonlin. Anal., 24, No. 8, 1235–1246 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. C. Apreutesei, “Some second order difference equations in Hilbert spaces,” Comm. Appl. Anal., 9, No. 1, 105–115 (2005).

    MathSciNet  MATH  Google Scholar 

  6. H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland Publishing Co., Amsterdam (1985).

    MATH  Google Scholar 

  7. F. Gozzi, E. Rouy, and A. Świeçh, “Second order Hamilton–Jacobi equations in Hilbert spaces and stochastic boundary control,” SIAM J. Control Optim., 38, No. 2, 400–430 (2000).

  8. J.-S. Hwang, Sh.-I. Nakagiri, “On semi-linear second order Volterra integro-differential equations in Hilbert space,” Taiwanese J. Math., 12, No. 3, 679–701 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Ishii, “Viscosity solutions of nonlinear second-order partial differential equations in Hilbert spaces,” Comm. Partial Different. Equat., 18, No. 3-4, 601–650 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Ishii and P.-L. Lions, “Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,” J. Different. Equat., 83, No. 1, 26–78 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983).

    Book  MATH  Google Scholar 

  12. R. Picard and D. McGhee, Partial Differential Equations: a Unified Hilbert Space Approach, Walter de Gruyter, Berlin (2011).

    Book  MATH  Google Scholar 

  13. R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Electronic Monographs in Differential Equations, San Marcos, TX (1994).

    Book  MATH  Google Scholar 

  14. L. De Simon and T. Giovanni, “Linear second order differential equations with discontinuous coefficients in Hilbert spaces,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1, 131–154 (1974).

  15. P. E. Sobolevskii, “Generalized solutions of first order differential equations in Hilbert space,” Dokl. Akad. Nauk SSSR, 122, No. 6, 994–996 (1958).

    MathSciNet  Google Scholar 

  16. A. Daletskii, “Stochastic differential equations in a scale of Hilbert spaces,” Electron. J. Probab., 23, Paper No. 119 (2018).

  17. S. Nicaise, “Differential equations in Hilbert spaces and applications to boundary value problems in nonsmooth domains,” J. Funct. Anal., 96, No. 2, 195–218 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Xio and L. Jin, “A note on the propagators of second order linear differential equations in Hilbert spaces,” Proc. Amer. Math. Soc., 113, No. 3, 663–667 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, 2nd ed., De Gruyter, Berlin (2016).

    Book  MATH  Google Scholar 

  20. A. A. Boichuk and A. A. Pokutnyi, “Perturbation theory of operator equations in the Fréchet and Hilbert spaces,” Ukr. Mat. Zh., 67, No. 9, 1181–1188 (2015); English translation: Ukr. Math. J., 67, No. 9, 1327–1335 (2016).

  21. D. A. Klyushin, S. I. Lyashko, D. A. Nomirovskii, Yu. I. Petunin, and V. V. Semenov, Generalized Solutions of Operator Equations and Extreme Elements, Springer, New York (2012).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Pokutnyi.

Additional information

Published in Neliniini Kolyvannya, Vol. 24, No. 3, pp. 329–341, July–September, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskra, O.Z., Pokutnyi, O.O. Boundary-Value Problems for the System of Operator-Differential Equations in Banach and Hilbert Spaces. J Math Sci 272, 228–235 (2023). https://doi.org/10.1007/s10958-023-06412-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06412-2

Navigation