Skip to main content
Log in

On the behavior of Orlicz–Sobolev mappings with branching on the unit sphere

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the mappings of the Orlicz–Sobolev classes with a branching defined in the unit ball of the Euclidean space. We have obtained estimates for the distortion of the distance under these mappings at the points of the unit sphere. Under some conditions, we have also obtained the Hölder continuity of the mappings mentioned above. If we suppose that the considered mappings are solutions to certain Laplacian-gradient inequalities, we get the Lipschitz property. In section 7–9, we review some results, prove a new result, Theorem 7.1, and outline the proof of Theorem 9.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Adamowicz and N. Shanmugalingam, “Non-conformal Loewner type estimates for modulus of curve families,” Ann. Acad. Sci. Fenn. Math., 35, 609–626 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Chen, M. Huang, A. Rasila, and X. Wang, “On Lipschitz continuity of solutions of hyperbolic Poisson’s equation,” Calc. Var. Partial Differ. Equ., 57(1), 1–32 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Dall’Acqua and G. Sweers, “Estimates for Green function and Poisson kernels of higher order Dirichlet boundary value problems,” Journal of Differential Equations, 205(2), 466–487 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Federer, Geometric Measure Theory, Berlin etc., Springer, 1969.

  5. F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353–393 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  6. F. W. Gehring and B. G. Osgood, “Uniform domains and the quasi-hyperbolic metric,” J. Anal. Math., 36, 50–74 (1979).

    Article  MATH  Google Scholar 

  7. D. Gilbarg and N. Trudinger, Elliptic partial Differential Equation of Second Order, Second Edition, Berlin, Heidelberg, Springer, 1983.

    MATH  Google Scholar 

  8. A. Golberg, R. Salimov, and E. Sevost’yanov, “Normal Families of Discrete Open Mappings with Controlled p-Module,” Contemporary Mathematics, 667, 83–103 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Gjokaj and D. Kalaj, “QCH mappings between unit ball and domain with C1,α boundary,” arXiv:2005.05667 [math.AP] (2021).

  10. J. Heinonen, Lectures on Analysis on metric spaces, New York, Springer Science+Business Media, 2001.

  11. P. Hajlasz and P. Koskela, “Sobolev met Poincaré,” Mem. Amer. Math. Soc., 145(668), 1–100 (2000).

    MATH  Google Scholar 

  12. D. Kalaj, “A priori estimate of gradient of a solution to certain differential inequality and quasiregular mappings,” J. d’Anal. Math., 119(1), 63–88 (2013).

    Article  MATH  Google Scholar 

  13. E. Heinz, “On certain nonlinear elliptic differential equations and univalent mappings,” J. d’ Anal. Math., 5, 197–272 (1956/57).

  14. V. I. Kruglikov, “Capacity of condensers and spatial mappings quasiconformal in the mean,” Math. USSRSb., 58(1), 185–205 (1987).

    MATH  Google Scholar 

  15. D. Kovtonyuk, V. Ryazanov, R. Salimov, and E. Sevost’yanov, “Toward the theory of Orlicz-Sobolev classes,” St. Petersburg Math. J., 25(6), 929–963 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. O. Martio, S. Rickman, and J. Väisälä, “Distortion and singularities of quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A1, 465, 1–13 (1970).

    MATH  Google Scholar 

  17. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer Science + Business Media, New York LLC, 2009.

  18. O. Martio and U. Srebro, “Automorphic quasimeromorphic mappings in Rn,” Acta Math., 135, 221–247 (1975).

  19. M. Mateljević, S. Salimov, and E. Sevost’yanov, “Hölder and Lipschitz continuity in Orlicz–Sobolev classes, distortion and harmonic mappings,” Filomat, 36(16), 5361–5392 (2022).

    Article  Google Scholar 

  20. L. Ma, “Hölder continuity of hyperbolic Poisson integral and hyperbolic Green integral,” Monatshefte für Mathematik, 199, 595–610 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Mateljević, “Distortion of harmonic functions and harmonic quasiconformal quasi-isometry,” Revue Roum. Math. Pures Appl., 51(5–6), 711–722 (2006).

    MathSciNet  MATH  Google Scholar 

  22. M. Mateljević, “Boundary behaviour of partial derivatives for solutions to certain Laplacian-gradient inequalities and spatial qc maps,” Springer Proceedings in Mathematics & Statistics, 357, 393–418 (2021).

    MathSciNet  Google Scholar 

  23. M. Mateljević, “Boundary Behaviour Of Partial Derivatives For Solutions To Certain Laplacian-Gradient Inequalities And Spatial Qc Maps 2,” Preprint, Comunicated at XII Symposium Mathematics and Applications, Mathematical Faculty, Belgrade, 2,3 (2022).

  24. M. Mateljević and N. Mutavdžić, “On Lipschitz continuity and smoothness up to the boundary of solutions of hyperbolic Poisson’s equation,” arXiv:2208.06197v1 (2022).

  25. M. Mateljević and M. Vuorinen, “On Harmonic Quasiconformal Quasi-Isometries,” Journal of Inequalities and Applications, Article ID 178–732 (2010).

  26. V. Maz’ya, Sobolev classes, New York, Berlin, Springer, 1985.

  27. N. Mutavdžić, “The growth of gradients QC-mappings in n-dimensional Euclidean space with bounded Laplacian,” Kragujevac Journal of Mathematics (to appear).

  28. L. Peijin and S. Ponnusamy, “Lipschitz Continuity of Quasiconformal Mappings and of the Solutions to Second Order Elliptic PDE with Respect to the Distance Ratio Metric,” Complex Analysis and Operator Theory, 12, 1991–2001 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Rickman, Quasiregular mappings, Berlin etc., Springer-Verlag, 1993.

    Book  MATH  Google Scholar 

  30. Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monogr., vol. 73, Amer. Math. Soc., Providence, RI, 1989.

  31. V. Ryazanov and E. Sevost’yanov, “Toward the theory of ring Q-homeomorphisms,” Israel J. Math., 168, 101–118 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Ryazanov, R. Salimov, and E. Sevost’yanov, “On the Hölder property of mappings in domains and on boundaries,” J. Math. Sci., 246(1), 60–74 (2020); transl. from Ukr. Mat. Visn., 16(3), 383–402 (2019).

    Google Scholar 

  33. S. Saks, Theory of the integral, New York, 1964.

  34. R. R. Salimov, “Estimation of the measure of the image of the ball,” Sib. Math. J., 53(4), 739–747 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  35. E. A. Sevost’yanov, “Theory of moduli and capacities, and normal families of mappings that admit branching,” Ukrainian Math. Bull., 4(4), 573–593 (2007).

    MathSciNet  Google Scholar 

  36. E. A. Sevost’yanov, “On the normality of families of space mappings with branching,” Ukrainian Math. J., 60(10), 1618–1632 (2008).

    Article  MathSciNet  Google Scholar 

  37. E. A. Sevost’yanov, “Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity,” Izv. Math., 74(1), 151–165 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  38. E. A. Sevost’yanov, “On the boundary behavior of some classes of mappings,” J. Math. Sci., 243(6), 934–948 (2019).

    Article  MathSciNet  Google Scholar 

  39. E. A. Sevost’yanov and S. A. Skvortsov, “On the local behavior of the Orlicz-Sobolev classes,” Journ. of Math. Sciences, 224(4), 563–581 (2017); transl. from Ukr. Mat. Visn., 13(4), 543–570 (2016).

  40. C. J. Titus and G. S. Young, “The extension of interiority, with some applications,” Trans. Amer. Math. Soc., 103(2), 329–340 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Berlin etc., Springer–Verlag, 1971.

  42. M. Vuorinen, “Exceptional sets and boundary behavior of quasiregular mappings in n-space,” Ann. Acad. Sci. Fenn. Ser. A 1. Math. Dissertationes, 11, 1–44 (1976).

  43. Widman Kjell-Ove, “Inequalities for the Green Function and Boundary Continuity of the Gradient of Solutions of Elliptic Differential Equations,” Mathematica Scandinavica, 21(1), 17–37 (1967).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag Mateljevic.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 19, No. 4, pp. 541–583, October–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateljevic, M., Sevost’yanov, E. On the behavior of Orlicz–Sobolev mappings with branching on the unit sphere. J Math Sci 270, 467–499 (2023). https://doi.org/10.1007/s10958-023-06358-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06358-5

Keywords

Navigation