Skip to main content
Log in

On the Hilbert problem for semi-linear Beltrami equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The presented paper is devoted to the study of the well-known Hilbert boundary-value problem for semi-linear Beltrami equations with arbitrary boundary data that are measurable with respect to logarithmic capacity. Namely, we prove here the corresponding results on the existence, regularity, and representation of its nonclassical solutions with a geometric interpretation of boundary values as the angular (along the nontangential paths) limits in comparison with the classical approach in PDE. For this purpose, we apply completely continuous operators by Ahlfors–Bers, first of all to obtain solutions of semi-linear Beltrami equations, generally speaking with no boundary conditions, and then to derive their representation through the solutions of the Vekua-type equations and the so-called generalized analytic functions with sources. Besides, we obtain similar results for nonclassical solutions of the Poincaré boundary-value problem on directional derivatives and, in particular, of the Neumann problem with arbitrary measurable data to semi-linear equations of the Poisson type. The obtained results are applied to some problems of mathematical physics describing such phenomena as diffusion with physical and chemical absorption, plasma states, and stationary burning in anisotropic and inhomogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ahlfors, Lectures on Quasiconformal Mappings. New York, Van Nostrand, 1966.

    MATH  Google Scholar 

  2. L. V. Ahlfors and L. Bers, “Riemann’s mapping theorem for variable metrics,” Ann. Math., 72(2), 385–404 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Astala, T. Iwaniec, and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series, 48. Princeton, NJ, Princeton University Press, 2009.

  4. R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. V. I–II. Oxford, Clarendon Press, 1975.

  5. G. I. Barenblatt, Ja. B. Zel’dovic, V. B. Librovich, and G. M. Mahviladze, The mathematical theory of combustion and explosions. New York, Consult. Bureau, 1985.

  6. J. Becker and Ch. Pommerenke, “H¨older continuity of conformal mappings and nonquasiconformal Jordan curves,” Comment. Math. Helv., 57(2), 221–225 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Begehr, Complex analytic methods for partial differential equations. An introductory text. River Edge, NJ: World Scientific Publishing Co., Inc., 1994.

    Book  MATH  Google Scholar 

  8. H. Begehr and G. Ch. Wen, Nonlinear elliptic boundary value problems and their applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 80. Harlow, Longman, 1996.

  9. B. Bojarski, V. Gutlyanskii, O. Martio, and V. Ryazanov, Infinitesimal geometry of quasiconformal and bi-lipschitz mappings in the plane, EMS Tracts in Mathematics, Vol. 19, Z¨urich: European Mathematical Society, 2013.

  10. L. Carleson, Selected Problems on Exceptional Sets, Princeton etc., Van Nostrand Co., Inc., 1971.

  11. J. I. Diaz, “Nonlinear partial differential equations and free boundaries. V. I. Elliptic equations,” Research Notes in Mathematics, 106, Boston, Pitman, 1985.

  12. O. Dovgoshey, O. Martio, V. Ryazanov, and M. Vuorinen, “The Cantor function,” Expo. Math., 24(1), 1–37 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. L. Duren, “Theory of Hp spaces,” Pure and Applied Mathematics, vol. 38. Academic Press, New York-London, 1970.

  14. N. Dunford and J. T. Schwartz, “Linear Operators. I. General Theory,” Pure and Applied Mathematics, 7. New York, London, Interscience Publishers (1958).

  15. M. Fékete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten,” Math. Z., 17, 228–249 (1923).

    Article  MathSciNet  MATH  Google Scholar 

  16. F. D. Gakhov, Boundary value problems. Dover Publications. Inc., New York, 1990.

    MATH  Google Scholar 

  17. F. W. Gehring, “On the Dirichlet problem,” Michigan Math. J., 3, 201 (1955–1956).

  18. F. W. Gehring and O. Martio, “Lipschitz classes and quasiconformal mappings,” Ann. Acad. Sci. Fenn. Ser. A I Math., 10, 203–219 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  19. F. W. Gehring and B. P. Palka, “Quasiconformally homogeneous domains,” J. Analyse Math., 30, 172–199 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “On a model semilinear elliptic equation in the plane,” J. Math. Sci., 220(5), 603–614 (2017); transl. from Ukr. Mat. Visn., 13(1), 91–105 (2016).

  21. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “On quasiconformal maps and semi-linear equations in the plane,” J. Math. Sci., 229(1), 7–29 (2018); transl. from. Ukr. Mat. Visn., 14(2), 161–191 (2017)

  22. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “To the theory of semi-linear equations in the plane,” J. Math. Sci., 242(6), 833–859 (2019); transl. from Ukr. Mat. Visn., 16(1), 105–140 (2019).

  23. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “On a quasilinear Poisson equation in the plane,” Anal. Math. Phys., 10(1), Paper No. 6, 1–14 (2020).

  24. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “Semi-linear equations and quasiconformal mappings,” Complex Var. Elliptic Equ., 65(5), 823–843 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Gutlyanskii, O. Nesmelova, V. Ryazanov, and E. Yakubov, “On boundary value problems for inhomogeneous Beltrami equations,” arXiv:2206.05045 [math.AP] (2022).

  26. V. Gutlyanskii, O. Nesmelova, V. Ryazanov, and A. Yefimushkin, “Logarithmic potential and generalized analytic functions,” J. Math. Sci., 256(6), 735–752 (2021); transl. from Ukr. Mat. Visn., 18(1), 12–36 (2021).

  27. V. Gutlyanskii, O. Nesmelova, V. Ryazanov, and A. Yefimushkin, “On boundary-value problems for semilinear equations in the plane,” J. Math. Sci., 259(1), 53–74 (2021); transl. from Ukr. Mat. Visn., 18(3), 359–388 (2021).

  28. V. Ya. Gutlyanskii, V. I. Ryazanov, E. Yakubov, and A. S. Yefimushkin, “On Hilbert boundary value problem for Beltrami equation,” Ann. Acad. Sci. Fenn. Math., 45(2), 957–973 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Gutlyanskii, V. Ryazanov, and A. Yefimushkin, “On the boundary value problems for quasiconformal functions in the plane,” J. Math. Sci., 214(2), 200–219 (2016); transl. from Ukr. Mat. Bull., 12(3), 363–389 (2015).

  30. D. Hilbert, Über eine Anwendung der Integralgleichungen auf eine Problem der Funktionentheorie, Verhandl. des III Int. Math. Kongr., Heidelberg, 1904.

  31. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.

  32. T. Iwaniec, “Regularity of solutions of certain degenerate elliptic systems of equations that realize quasiconformal mappings in n-dimensional space,” Differential and integral equations. Boundary value problems, 97–111 (1979).

  33. T. Iwaniec, “Regularity theorems for solutions of partial differential equations for quasiconformal mappings in several dimensions,” Dissertationes Math. (Rozprawy Mat.), 198, 45 pp. (1982).

  34. P. Koosis, Introduction to Hp spaces, Cambridge Tracts in Mathematics vol. 115, Cambridge Univ. Press, Cambridge, 1998.

  35. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968; transl. from Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, Moscow, 1964.

  36. N. S. Landkof, Foundations of modern potential theory, Moscow, Nauka, 1966; Grundlehren der mathematischen Wissenschaften, 180, New York–Heidelberg, Springer-Verlag, 1972.

  37. O. Lehto and K. J. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, Berlin, Heidelberg, 1973.

    Book  MATH  Google Scholar 

  38. J. Leray and Ju. Schauder, “Topologie et equations fonctionnelles,” Ann. Sci. Ecole Norm. Sup., 51(3), 45–78 (1934); transl. “Topology and functional equations,” Uspehi Matem. Nauk (N.S.), 1(3–4) (13–14), 71–95 (1946).

  39. N. N. Luzin, “On the main theorem of integral calculus,” Mat. Sb., 28, 266–294 (1912).

    Google Scholar 

  40. N. N. Luzin, Integral and trigonometric series, Dissertation, Moskwa, 1915.

    Google Scholar 

  41. N. N. Luzin, Integral and trigonometric series, Editing and commentary by N.K. Bari and D.E. Men’shov. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951.

  42. N. Luzin, “Sur la notion de l’integrale,” Annali Mat. Pura e Appl., 26(3), 77–129 (1917).

    Article  Google Scholar 

  43. V. G. Maz’ja, Sobolev spaces, Springer-Verlag, Berlin, 1985.

    Book  Google Scholar 

  44. J. Mawhin, “Leray-Schauder continuation theorems in the absence of a priori bounds,” Topol. Methods Nonlinear Anal., 9(1), 179–200 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  45. N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, Dover Publications Inc., New York, 1992.

  46. R. Nevanlinna, Eindeutige analytische Funktionen, Ann Arbor, Michigan, 1944.

    MATH  Google Scholar 

  47. S. I. Pokhozhaev, “On an equation of combustion theory,” Mat. Zametki, 88(1), 53–62 (2010); Math. Notes, 88(1–2), 48–56 (2010).

  48. Ch. Pommerenke, “Boundary behaviour of conformal maps,” Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, vol. 299, Springer-Verlag, Berlin, 1992.

  49. I. I. Priwalow, Randeigenschaften analytischer Funktionen, Hochschulbücher für Mathematik, vol. 25, Deutscher Verlag der Wissenschaften, Berlin, 1956.

  50. V. Ryazanov, “On the Riemann-Hilbert problem without index,” Ann. Univ. Buchar. Math. Ser., 5(LXIII)(1), 169–178 (2014).

  51. V. Ryazanov, “Infinite dimension of solutions of the Dirichlet problem,” Open Math. (the former Central European J. Math., 13(1), 348–350 (2015).

  52. V. Ryazanov, “On Neumann and Poincaré problems for Laplace equation,” Anal. Math. Phys., 7(3), 285–289 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  53. V. Ryazanov, “On the Theory of the Boundary Behavior of Conjugate Harmonic Functions,” Complex Analysis and Operator Theory, 13(6), 2899–2915 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  54. V. Ryazanov, “On Hilbert and Riemann problems for generalized analytic functions and applications,” Anal.Math.Phys., 11, 5 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  55. V. Ryazanov, “Hilbert and Poincar´e problems for semi-linear equations in rectifiable domains,” Topol. Methods Nonlinear Anal. (accepted), see also arXiv:2107.10665v2 [math.CV] (2022).

  56. S. Saks, Theory of the integral, Warsaw, 1937; Dover Publications Inc., New York, 1964.

  57. S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. of Math. Mon., vol. 7, AMS, Providence, R.I., 1963.

  58. Th. Trogdon and Sh. Olver, Riemann–Hilbert problems, their numerical solution, and the computation of nonlinear special functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2016.

  59. I. N. Vekua, Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass, 1962.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gutlyanskiĭ.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 19, No. 4, pp. 489–516, October–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutlyanskiĭ, V., Ryazanov, V., Nesmelova, O. et al. On the Hilbert problem for semi-linear Beltrami equations. J Math Sci 270, 428–448 (2023). https://doi.org/10.1007/s10958-023-06356-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06356-7

Keywords

Navigation