Skip to main content

Advertisement

Log in

Specific Features of the Contact Interaction and Wear of Thin-Walled Structural Elements

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider contact problems for thin-walled structural elements and their wear. We propose a unified method for solving the problems based on the reduction to Volterra integral equations. This enables us to detect singularities of solutions depending on the hypotheses characterizing the process of deformation of thin-walled elements. We present the solutions and analyze the problems of wear of the plates by a rigid punch and a hot punch with regard for the friction heating and changes in the thickness of the plate in the process of wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Aleksandrov and G. K. Annakulova, “Contact problem of thermoelasticity with regard for wear and friction-induced heat release,” Tren. Iznos, 11, No. 1, 24–28 (1990).

    Google Scholar 

  2. V. M. Aleksandrov and S. M. Mkhitaryan, Contact Problems for Bodies with Thin Coatings and Interlayers [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  3. V. M. Aleksandrov and М. I. Chebakov, Introduction to the Mechanics of Contact Interactions [in Russian], TsVVR, Rostov-on-Don (2005).

    Google Scholar 

  4. A. A. Amirdzhanyan and A. V. Saakyan, “On forcing of a Π-shaped rigid punch into an elastic half plane with regard for the forces of sliding friction and adhesion,” Izv. Nats. Akad. Nauk Arm. Mekh., 66, No. 3, 3–11 (2013).

    Google Scholar 

  5. A. E. Andreikiv and M. V. Chernets, Evaluation of the Contact Interaction of Machine Parts in Friction [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  6. Yu. P. Artyukhin, “One-dimensional contact problems of the theory of shells,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 3, 55–65 (1981).

    MathSciNet  Google Scholar 

  7. V. V. Aulin and V. M. Bobryts’kyi, “Computer modeling of temperature and stress fields in composite materials and coatings during their formation, friction, and wear,” Zbirn. Nauk. Prats’ Kirovograd. Nats. Tekh. Univ.: Tekh. S.-H. Vyrobn., Haluz. Mashynobud., Avtomatyz., Issue 27, 236–245 (2014).

  8. M. V. Blokh, “Choice of the model in problems of contact between thin-walled bodies,” Prikl. Mekh., 13, No. 5, 34–42 (1977); English translation: Sov. Appl. Mech., 13, 449–455 (1977); 10.1007/BF00901799.

  9. A. A. Bobylev, I. S. Belashova, and S. D. Kuz’min, “Contact problem of forcing of a convex punch into a functional gradient coating by a given force,” Vest. Mosk. Aviats. Inst., 21, No. 3, 151–160 (2014).

  10. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Oxford Univ. Press, Oxford (2001).

    MATH  Google Scholar 

  11. N. D. Vaisfel’d, “Collision of an elastic finite-length cylinder with a rigid barrier,” Prikl. Mekh., 43, No. 9, 74–82 (2007); English translation: Int. Appl. Mekh., 43, Issue 9, 1009–1016 (2007).

  12. A. B. Vasil’eva and N. A. Tikhonov, Integral Equations [in Russian], Fizmatlit, Moscow (2002).

  13. I. N. Vekua, Some General Methods of Construction of Different Versions of the Theory of Shells [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  14. A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, and Programs [in Russian], Naukova Dumka, Kiev (1986).

  15. L. A. Galin, Contact Problems of the Theory of Elasticity and Viscoelasticity [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  16. G. H. Golub and C. F. Van Loan, Matrix Computations, JHU Press, Baltimore–London (1996).

  17. I. G. Goryacheva, Mechanics of Friction Interaction [in Russian], Nauka, Moscow (2001).

    Google Scholar 

  18. É. I. Grigolyuk and V. M. Tolkachev, Contact Problems of the Theory of Plates and Shells [in Russian], Mashinostroenie, Moscow (1980).

    Google Scholar 

  19. Ya. M. Grigorenko, A. T. Vasilenko, I. G. Emel’yanov, B. L. Pelekh, and A. V. Maksimuk, Statics of Structural Elements, in: A. N. Guz’ (editor), Mechanics of Composite Materials [in Russian], Vol. 8, A. S. K, Kiev (1999).

  20. Ya. M. Grigorenko and N. N. Kryukov, “Solution of problems of the theory of plates and shells with the use of spline functions (survey),” Prikl. Mekh., 31, No. 6, 3–27 (1995); English translation: Int. Appl. Mekh., 31, 413–434 (1995).

  21. D. V. Grilitskii and V. I. Pauk, “A contact problem for a thick rough layer showing wear and heat production,” Fiz.-Khim. Mekh. Mater., 25, No. 3, 78–83 (1989); English translation: Sov. Mater. Sci., 25, 305–310 (1989).

  22. A. N. Guz and V. B. Rudnitskii, Fundamentals of the Theory of Contact Interaction of Elastic Bodies with Initial (Residual) Stresses [in Russian], PP Mel’nik, Khmelnitskii (2006).

    Google Scholar 

  23. K. L. Johnson, Contact Mechanics, Cambridge Univ. Press, Cambridge (1985).

    Book  MATH  Google Scholar 

  24. O. V. Zakalov and I. O. Zakalov, Foundations of Friction and Wear in Machines: A Manual [in Ukrainian], Pulyui Ternopil National Technical University, Ternopil (2011).

    Google Scholar 

  25. G. S. Kit and M. G. Krivtsun, Plane Problems of Thermoelasticity for Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1983).

    MATH  Google Scholar 

  26. G. S. Kit and A. V. Maksimuk, “Wear of thin-walled structural elements of composite materials with regard for thermal effects,” Mekh. Kompozit. Mater., 35, No. 3, 309–318 (1999).

    Google Scholar 

  27. G. S. Kit and A. V. Maksimuk, “Method of Volterra integral equations in contact problems for thin-walled structural elements,” Teor. Prikl. Mekh., Issue 27, 29–35 (1997).

  28. B. V. Kopei, A. V. Maksimuk, and N. N. Shcherbina, “Analysis of contact stresses in structural joints of a composite shell with steel shroud,” Mekh. Kompoz. Mater., 36, No. 1, 109–120 (2000).

    Google Scholar 

  29. I. V. Kragel’skii, M. N. Dobychin, and V. S. Kombalov, Fundamentals of the Numerical Analysis of Friction and Wear [in Russian], Mashinostroenie, Moscow (1977).

  30. V. D. Kubenko, V. V. Gavrylenko, and Ya. A. Zhuk, “Nonstationary contact problem of the theory of elasticity (conforming and nonconforming surfaces),” Met. Rozv. Prykl. Zadach Mekh. Deformiv. Tverd. Tila, Issue 10, 162–178 (2009).

    Google Scholar 

  31. A. G. Kuz’menko, Reliability of Friction Units in Terms of Strength and Wear [in Russian], Khmelnitskii National University, Khmelnitskii (2011).

  32. R. М. Kushnir, V. S. Popovych, and H. Yu. Harmatii, “Analytic-numerical solution of contact problems of thermoelasticity for thermosensitive bodies,” Fiz.-Khim. Mekh. Mater., 37, No. 6, 39–44 (2001); English translation: Mater. Sci., 37, No. 6, 893–901 (2001).

  33. R. М. Kushnir, V. S. Popovych, and B. V. Protsyuk, “On the development of investigations of the thermomechanical behavior of thermally sensitive bodies,” Mat. Met. Fiz.-Mekh. Polya, 59, No. 3, 7–27 (2016); English translation: J. Math. Sci., 236, No. 1, 1–20 (2019); 10.1007/s10958-018-4094-4.

  34. V. М. Maksymovych, A. Yu. Kotsyuba, and S. V. Lavrenchuk, Plane Contact Problems of the Theory of Elasticity for Bodies of Complex Shape [in Ukrainian], Editing and Publishing Department of the Lutsk National Technical University, Lutsk (2012).

  35. O. V. Maksimuk, “On the problem of wear of thin anisotropic plates,” Mat. Met. Fiz.-Mekh. Polya, 40, No. 3, 125–128 (1997); English translation: J. Math. Sci., 96, No. 1, 2907–2910 (1999); 10.1007/BF02169005.

  36. O. V. Maksymuk, “Dependence of wear of anisotropic plates on their thickness,” Fiz.-Khim. Mekh. Mater., 36, No. 4, 117–119 (2000); English translation: J. Math. Sci., 36, No. 4, 620–624 (2000).

  37. O. V. Maksymuk, “Mathematical model of wear of anisotropic plates by a hot punch,” Probl. Trybol., Issue 5, 53–60 (1997).

    Google Scholar 

  38. O. V. Maksymuk, “On a version of the theory of transversely isotropic plates of varying thickness,” Mat. Met. Fiz.-Mekh. Polya, 43, No. 1, 130–136 (2000).

    MATH  Google Scholar 

  39. O. V. Maksymuk, R. M. Makhnits’kyi, and N. M. Shcherbyna, Mathematical Modeling and Methods for Calculating Thin-Walled Composite Structures [in Ukrainian], Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Lviv (2005).

  40. R. M. Martinyak and R. M. Shvets’, “A mathematical model of mechanical contact of bodies across a thin inhomogeneous layer,” Mat. Met. Fiz.-Mekh. Polya, 40, No. 2, 107–109 (1997); English translation: J. Math. Sci., 90, No. 2, 2000–2002 (1998).

  41. V. I. Mossakovskii, V. S. Gudramovich, V. S. Makeev, Contact Problems of the Theory of Shells and Bars [in Russian], Mashinostroenie, Moscow (1978).

    Google Scholar 

  42. N. K. Myshkin and M. I. Petrokovets, Friction, Lubrication, and Wear. Physical Foundations and Technical Applications of Tribology [in Russian], Fizmatlit, Moscow (2007).

  43. O. V. Nakhaichuk, A. A. Mizrakh, N. O. Pukhtits’ka, and V. I. Muzychuk, “Investigation of the influence of friction on the stressed state in the process of indentation by a rounded indenter,” Probl. Trybol., 78, No. 4, 11–16 (2015).

  44. V. I. Ostrik, “Axisymmetric contact of a punch of polynomial profile with an elastic half space in the presence of friction and adhesion,” Prikl. Mat. Mekh., 77, No. 4, 605–619 (2013).

    Google Scholar 

  45. V. I. Ostryk, Contact Mechanics: A Textbook [in Ukrainian], “Kyivs’kyi Universytet” VPTs, Kyiv (2015).

    Google Scholar 

  46. V. V. Panasyuk and M. I. Teplyi, Some Contact Problems of the Theory of Elasticity [in Ukrainian], Naukova Dumka, Kyiv (1975).

    Google Scholar 

  47. B. L. Pelekh, A. V. Maksimuk, and I. M. Korovaichuk, Contact Problems for Layered Structural Elements and Bodies with Coatings [in Russian], Naukova Dumka, Kiev 1988.

    Google Scholar 

  48. Ya. S. Pidstryhach, Selected Works [in Ukrainian], Naukova Dumka, Kyiv (1995).

    Google Scholar 

  49. I. M. Pistunov, Sliding Friction Units. Models and Optimization [in Ukrainian], National Mining University, Dnipropetrovsk (2009).

    Google Scholar 

  50. Yu. M. Podil’chuk, V. S. Tkachenko, and Ya. I. Sokolovskii, “Thermoelastic contact problem of forcing of a heated punch elliptic in plan into a transversely isotropic space,” Prikl. Mekh., 32, No. 11, 38–45 (1996).

  51. Ya. S. Pidstryhach and Yu. M. Kolyano, Nonstationary Temperature Fields and Stresses in Thin Plates [in Russian], Naukova Dumka, Kiev (1972).

    Google Scholar 

  52. Ya. S. Pidstryhach and R. N. Shvets, Thermoelasticity of Thin Shells [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  53. S. V. Poltavchenko, “Modeling of wear-resistant components with coatings,” Trudy Odessa Politekh. Univ., Issue 1(25), 32–36 (2006).

    Google Scholar 

  54. G. Ya. Popov and V. M. Tolkachev, “Problem of contact of bodies with thin-walled elements,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 192–206 (1980).

  55. V. L. Rvachev and V. S. Protsenko, Contact Problems of the Theory of Elasticity for Nonclassical Domains [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  56. R. V. Sorokatyi, S. F. Posons’kyi, and K. O. Dykha, “Modeling of wear-contact parameters for cylindrical guides of sliding,” Probl. Trybol., 75, No. 1, 37–43 (2015).

  57. A. F. Ulitko and V. I. Ostryk, “Friction contact of a rigid cone with an elastic half space,” Mat. Met. Fiz.-Mekh. Polya, 55, No. 4, 106–116 (2012).

    Google Scholar 

  58. Kh. Chihos, System Analysis in Tribonics [in Russian], Mir, Moscow (1982).

    Google Scholar 

  59. A. V. Chichinadze, É. M. Berliner, É. D. Brawn, Friction, Wear, and Lubrication (Tribology and Triboengineering) [in Russian], Mashinostroenie, Moscow (2003).

    Google Scholar 

  60. J. R. Barber, “Some thermoelastic contact problems involving frictional heating,” Quart. J. Mech. Appl. Math., 29, No. 1, 1–13 (1976).

    Article  MATH  Google Scholar 

  61. M. Ciavarella and N. Menga, “A note on wear of elastic sliding parts with varying contact area,” J. Mech. Mater. Struct., 10, No. 3, 255–264 (2015).

    Article  MathSciNet  Google Scholar 

  62. C. Ciulcu, T.-V. Hoarau-Mante, and M. Sofonea, “Viscoelastic sliding contact problems with wear,” Math. Comput. Model., 36, Nos. 7-8, 861–874 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  63. I. Çömez, “Frictional contact problem for a rigid cylindrical stamp and an elastic layer resting on a half plane,” Int. J. Solids Struct., 47, Nos. 7-8, 1090–1097 (2010).

    Article  MATH  Google Scholar 

  64. F. Erdogan and M. A. Güler, Contact Mechanics of FGM Coatings, Lehigh Univ., Bethlehem (2000).

    MATH  Google Scholar 

  65. I. L. Singer and H. Pollock (editors), Fundamentals of Friction: Macroscopic and Microscopic Processes, NATO ASI Ser. E, Vol. 220, Kluwer, Dordrecht (1992).

    Google Scholar 

  66. N. Gray, “Automatic reduction of elliptic integrals using Carlson’s relations,” Math. Comput., 71, No. 237, 311–318 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  67. D. A. Hills, D. Nowell, and A. Sackfield, “The state of stress induced by cylindrical sliding contacts with frictional heating,” Int. J. Mech. Sci., 32, No. 9, 767–778 (1990).

    Article  Google Scholar 

  68. K. Holmberg and A. Matthews, Coatings Tribology: Properties, Mechanisms, Techniques, and Applications in Surface Engineering, Elsevier (2009).

  69. K. Holmberg, H. Ronkainen, A. Laukkanen, and K. Wallin, “Friction and wear of coated surfaces—scales, modelling and simulation of tribomechanisms,” Surf. Coat. Technol., 202, Nos. 4-7, 1034–1049 (2007).

    Article  Google Scholar 

  70. V. Kahya, A. Birinci, and R. Erdol, “Frictionless contact problem between two orthotropic elastic layers,” Int. J. Civil, Arch., Struct. Const. Eng., 1, No. 1, 7–13 (2007).

    MathSciNet  MATH  Google Scholar 

  71. H. Kit and O. Maksymuk, “Wear of thin coating of solids with regard for an intermediate layer,” in: Proc. of the 3rd Internat. Symp. on Tribo-Fatigue (ISTF 2000), Human University Press, Beijing (2000), pp. 499–503.

    Google Scholar 

  72. L. F. Ma and A. M. Korsunsky, “Fundamental formulation for frictional contact problems of coated systems,” Int. J. Solids Struct., 41, Nos. 11-12, 2837–2854 (2004).

    Article  MATH  Google Scholar 

  73. E. Öner, M. Yaylaci, and A. Birinci, “Analytical solution of a contact problem and comparison with the results from FEM,” Struct. Eng. Mech., 54, No. 4, 607–622 (2015).

    Article  Google Scholar 

  74. V. L. Popov, Contact Mechanics and Friction: Physical Principles and Applications, Springer, Berlin (2010).

    Book  MATH  Google Scholar 

  75. J. Rojek and J. J. Telega, “Contact problems with friction, adhesion and wear in orthopaedic biomechanics. Part I — General developments,” J. Theor. Appl. Mech., 39, No. 3, 655–677 (2001).

    MATH  Google Scholar 

  76. B. Rončević, “Effect of friction on a receding contact between cylindrical indenter, layer and substrate,” Mach. Technol. Mater., 10, No. 8, 3–6 (2016).

    Google Scholar 

  77. I. A. Soldatenkov, “The periodic contact problem of the plane theory of elasticity. Taking friction, wear, and adhesion into account,” J. Appl. Math. Mech., 77, No. 2, 245–255 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  78. C. Stolz, “Thermodynamical description of running discontinuities: application to friction and wear,” Entropy, 12, No. 6, 1418–1439 (2010).

    Article  Google Scholar 

  79. M. Szolwinski and T. Farris, “Mechanics of fritting fatigue crack formation,” Wear, 198, Nos. 1-2, 93–107 (1996).

    Article  Google Scholar 

  80. S. A. S. Vanini, M. Shahba, and N. Kordani, “Numerical investigation of sliding frictional contact in functionally graded steels (FGS),” Mater. Res., 17, No. 6, 1478–1484 (2014).

    Article  Google Scholar 

  81. P. Wriggers, Computational Contact Mechanics, J. Wiley & Sons, Chichester (2002).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. V. Maksymuk.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 63, No. 1, pp. 133–148, January–March, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksymuk, О.V. Specific Features of the Contact Interaction and Wear of Thin-Walled Structural Elements. J Math Sci 270, 157–175 (2023). https://doi.org/10.1007/s10958-023-06338-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06338-9

Keywords

Navigation