Skip to main content
Log in

Local Stationarity for the Klein—Gordon Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the Cauchy problem for the Klein–Gordon equation in \({\mathbb{R}}^{d},d\ge 1,\) with random initial data. We introduce a family of initial measures \({\mu }_{0}^{\varepsilon },\varepsilon >0\) depending on a small parameter ε. The measures \({\mu }_{0}^{\varepsilon }\) are assumed to be locally homogeneous or slowly varying under spatial shifts of order o(ε−1) and inhomogeneous under shifts of order ε−1. Moreover, the correlation functions of \({\mu }_{0}^{\varepsilon }\) decrease uniformly in ε at large distance. For any τ ≠ 0 and \({r\in {\mathbb{R}}}^{d}\) we consider distributions of a random solution at time moments t = τ/ε and at spatial points close to r/ε. We study the asymptotics of these distributions as ε → 0 and derive the energy transport equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Dobrushin, A. Pellegrinotti, Yu. M. Sukhov, and L. Triolo, “One-dimensional harmonic lattice caricature of hydrodynamics,” J. Stat. Phys. 43, 571–607 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  2. T. V. Dudnikova and H. Spohn, “Local stationarity for lattice dynamics in the harmonic approximation,” Markov Process. Relat. Fields 12, No. 4, 645–578 (2006).

    MathSciNet  MATH  Google Scholar 

  3. T. V. Dudnikova, A. I. Komech, E. A. Kopylova, and Yu. Suhov, “On convergence to equilibrium distribution, I: The Klein–Gordon equation with mixing,” Commun. Math. Phys. 225, No. 1, 1–32 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  4. T. V. Dudnikova and A. I. Komech, “On a two-temperature problem for the Klein–Gordon equation,” Theory Probab. Appl. 50, No. 4, 582–611 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. T. V. Dudnikova, “Convergence to stationary non-equilibrium states for Klein–Gordon equations,” Izv. Math. 85, No. 5, 932–952 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. L. Dobrushin, A. Pellegrinotti, Yu. M. Suhov, and L. Triolo, “One-dimensional harmonic lattice caricature of hydrodynamics: Second approximation,” J. Stat. Phys. 52, No.1-2, 423–439 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. V. Dudnikova, “Deriving hydrodynamic equations for lattice systems,” Theor. Math. Phys. 169, No. 3, 1668–1682 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Spohn, “The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics,” J. Stat. Phys. 124, No. 2-4, 1041–1104 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters–Noordhoff, Groningen (1971).

    MATH  Google Scholar 

  10. M. A. Rosenblatt, “A central limit theorem and a strong mixing condition,” Proc. Nat. Acad. Sci. USA 42, 43–47 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, Springer, New York etc. (1982).

    Book  MATH  Google Scholar 

  12. N. K. Nikol’skij, Treatise on the Shift Operator. Spectral Function Theory, Springer, Berlin etc. (1986).

  13. M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer, Dordrecht (1988).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Dudnikova.

Additional information

Translated from Problemy Matematicheskogo Analiza 121, 2023, pp. 43-55.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikova, T.V. Local Stationarity for the Klein—Gordon Equations. J Math Sci 269, 173–188 (2023). https://doi.org/10.1007/s10958-023-06268-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06268-6

Navigation