Skip to main content
Log in

Two Coefficient Conjectures for Nonvanishing Hardy Functions, I

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

There are two eminent still open conjectures for nonvanishing holomorphic Hardy functions f(z) on the unit disk. The Hummel–Scheinberg–Zalcman conjecture posed in 1977 extends Krzyz’s conjecture of 1968 to Hp spaces with finite p > 1 and states that Taylor’s coefficients of nonvanishing holomorphic functions f ∈ Hp with norm ‖fp ≤ 1 are sharply estimated by |cn| ≤ (2/e)1 − 1/p, with appropriate extremal functions.

Both conjectures have been investigated by many authors; however still remain open. The desired Krzyz’s estimate |cn| ≤ 2/e for f ∈ H with ‖f ≤ 1 was established only for the initial coefficients cn with n ≤ 5 The only known results for the Hummel–Scheinberg–Zalcman conjecture are that it is true for n = 1 and n = 2 as well as some results for special subclasses of Hp.

We prove here that the Hummel–Scheinberg–Zalcman conjecture is true for all spaces H2m with m ∈ N. In the limit as m → ∞, this also provides the proof of Krzyz’s conjecture.

Our approach involves deep results from Teichmüller space theory, especially the Bers isomorphism theorem for Teichmüller spaces of punctured Riemann surfaces, and special quasiconformal deformations of H2m functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors and L. Bers, “Riemann’s mapping theorem forvariable metrics,” Ann. of Math., 72, 385–401 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. V. Ahlfors and G. Weill, “A uniqueness theorem for Beltrami equations,” Proc. Amer. Math. Soc., 13, 975–978 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Beneteau and B. Korenblum, “Some coefficient estimates for Hp functions,” Complex analysis and dynamical systems, Contemp. Math., 364, Amer. Math. Soc., Providence, RI, 5–14 (2004).

  4. L. Bers, “A non-standard integral equation with applications to quasiconformal mappings,” Acta Math., 116, 113–134 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Bers, “Fiber spaces over Teichm¨uller spaces,” Acta Math., 130, 89–126 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. E. Brown, “A coefficient problem for nonvanishing Hp functions,” Complex Variables, 4, 253–265 (1985).

    MathSciNet  MATH  Google Scholar 

  7. J. E. Brown and J. Walker, “A coefficient estimate for nonvanishing Hp functions,” Rocky Mountain J. Math., 18, 707–718 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  8. C. J. Earle, “On quasiconformal extensions of the Beurling-Ahlfors type,” Contribution to Analysis, Academic Press, New York, pp. 99–105 (1974).

  9. C. J. Earle, I. Kra, and S. L. Krushkal, “Holomorphic motions and Teichmüller spaces,” Trans. Amer. Math. Soc., 944, 927–948 (1994).

    MATH  Google Scholar 

  10. F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Amer. Math. Soc., Providence, RI (2000).

  11. G. M. Goluzin, Geometric Theory of Functions of Complex Variables. Transl. of Math. Monographs, vol. 26, Amer. Math. Soc., Providence, RI (1969).

  12. Ch. Horowitz, “Coefficients of nonvanishing functions in H,” Israel J. Math., 30, 285–291 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. A. Hummel, S. Scheinberg, and L. Zalcman, “A coefficient problem for bounded nonvanishing functions,” J. Anal. Math., 31, 169–190 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. L. Krushkal, Quasiconformal Mappings and Riemann Surfaces, Wiley, New York (1979).

    MATH  Google Scholar 

  15. S. L. Krushkal, “Quasiconformal maps decreasing Lp norm,” Siberian Math. J., 41, 884–888 (2000).

    Article  MathSciNet  Google Scholar 

  16. S. L. Krushkal, “Teichmüller spaces and coefficient problems for univalent holomorphic functions,” Analysis and Mathematical Physics, 10(4) (2020).

  17. S. L. Krushkal, “Teichmüller space theory and classical problems of geometric function theory,” J. Math. Sci., 258(3), 276–289; transl. from Ukr. Math. Bull., 18(2), 160–178 (2021).

  18. J. Krzyz, “Coefficient problem for bounded nonvanishing functions,” Ann. Polon. Math., 70, 314 (1968).

    Google Scholar 

  19. Z. Lewandowski and J. Szynal, “On the Krzyz conjecture and related problems,” In: XVIth Rolf Nevanlinna Colloquium (Joensu, 1995), de Gruyter, Berlin, pp. 257–269 (1996).

  20. I. I. Privalov, Boundary properties of analytic functions [in Russian], Gostechizdat, Moscow (1950).

    Google Scholar 

  21. D. V. Prokhorov and J. Szynal, “Coefficient estimates for bounded nonvanishing functions,” Bull. Acad. Polon. Sci. Ser., 29, 223–230 (1981).

    MathSciNet  MATH  Google Scholar 

  22. H. L. Royden, “Automorphisms and isometries of Teichmüller space,” Advances in the Theory of Riemann Surfaces (Ann. of Math. Stud., vol. 66), Princeton Univ. Press, Princeton, pp. 369–383 (1971).

  23. N. Samaris, “A proof of Krzyz’s conjecture for the fifth coefficient,” Complex Variables, 48, 753–766 (2003).

    MathSciNet  MATH  Google Scholar 

  24. T. J. Suffridge, “Extremal problems for nonvanishing Hp functions,” Computational methods and function theory (Valparaiso, 1989). Lectures Notes in Math., 1435, Springer, Berlin, pp. 177–190 (1990).

  25. W. Szapiel, “A new approach to the Krzyz conjecture,” Ann. Univ. Mariae Curie-Sklodowska Sect. A, 48, 169–192 (1994).

    MathSciNet  MATH  Google Scholar 

  26. D.-L. Tan, “Estimates of coefficients of bounded nonvanishing analytic functions,” Chinese Ann. Math. Ser. A, l4, 97–104 (1983).

    MathSciNet  MATH  Google Scholar 

  27. O. Teichmüller, “Ein Verschiebungssatz der quasikonformen Abbildung,” Deutsche Math., 7, 336–343 (1944).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Krushkal.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 19, No. 3, pp. 382–412, July–September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krushkal, S.L. Two Coefficient Conjectures for Nonvanishing Hardy Functions, I. J Math Sci 268, 199–221 (2022). https://doi.org/10.1007/s10958-022-06192-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06192-1

Keywords

Navigation