Skip to main content
Log in

BMO and Dirichlet Problem for Degenerate Beltrami Equation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Following Bojarski and Vekua, we have studied the Dirichlet problem \( \underset{z\to \zeta }{\lim}\operatorname{Re}\ f(z)=\varphi \left(\zeta \right) \) as z → ζ, z ∈ D, ζ ∈ ∂D, with continuous boundary data φ(ζ) in bounded domains D of the complex plane ℂ, where f satisfies the degenerate Beltrami equation \( {f}_{\overline{z}}=\mu (z){f}_z,\left|\mu (z)\right|<1 \), a.e. in D. Assuming that D is an arbitrary simply connected domain, we have established, in terms of μ, the BMO and FMO criteria, as well as a number of other integral criteria, on the existence and representation of regular discrete open solutions to the stated above problem. We have also proven similar theorems on the existence of multivalued solutions to the problem with single-valued real parts in an arbitrary bounded domain D with no boundary component degenerated to a single point. Finally, we have given a similar solvability and representation results concerning the Dirichlet problem in such domains for the degenerate A-harmonic equation associated with the Beltrami equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ahlfors, Lectures on Quasiconformal Mappings, New York, Van Nostrand (1966).

    MATH  Google Scholar 

  2. C. Andreian Cazacu, “On the length-area dilatation,” Complex Variables, Theory Appl., 50(7–11), 765–776 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Astala, T. Iwaniec, and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series, 48. Princeton, NJ, Princeton University Press (2009).

  4. B. Bojarski, “Generalized solutions of a system of differential equations of the first order of the elliptic type with discontinuous coefficients,” Mat. Sb., New Ser., 43(85)(4), 451–503 (1958).

  5. B. Bojarski, V. Gutlyanskii, O. Martio, and V. Ryazanov, Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane. EMS Tracts in Mathematics, 19. Z¨urich, European Mathematical Society (2013).

  6. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On integral conditions for the general Beltrami equations,” Complex Anal. Oper. Theory, 5(3), 835–845 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On existence and representation of solutions for general degenerate Beltrami equations,” Complex Var. Elliptic Equ., 59(1), 67–75 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “The Beltrami equations and prime ends,” J. Math. Sci., 210(1), 22–51 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Brezis and L. Nirenberg, “Degree theory and BMO. I. Compact manifolds without boundaries,” Selecta Math. (N.S.), 1(2), 197–263 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Chiarenza, M. Frasca, and P. Longo, “W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 336(2), 841–853 (1993).

  11. W. Fischer and I. Lieb, A course in complex analysis. From basic results to advanced topics, Vieweg + Teubner, Wiesbaden (2012).

    Book  MATH  Google Scholar 

  12. G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monographs 26, Amer. Math. Soc., Providence, R.I. (1969).

  13. V. Gutlyanskii, O. Martio, T. Sugawa, and M. Vuorinen, “On the degenerate Beltrami equation,” Trans. Amer. Math. Soc., 357(3), 875–900 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Gutlyanskii, V. Ryazanov, E. Sevostyanov, and E. Yakubov, “On the degenerate Beltrami equation and hydrodynamic normalization,” J. Math. Sci., 262(2), 165–183, transl. from Ukr. Mat. Visn., 19(1), 49–74 (2022).

  15. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami equation. A geometric approach, Developments in Mathematics, 26, New York, Springer (2012).

  16. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, “On recent advances in the Beltrami equations,” J. Math. Sci., 175(4), 413–449 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Gutlyanskii, V. Ryazanov, and E. Yakubov, “The Beltrami equations and prime ends,” J. Math, Sci., 210(1), 22–51 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford–New York–Tokyo, Oxford Mathematical Monographs, Clarendon Press (1993).

  19. A. A. Ignat’ev and V. I. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukrainian Math. Bull., 2(3), 403–424 (2005).

  20. T. Iwaniec and C. Sbordone, “Riesz transforms and elliptic PDEs with VMO coefficients,” J. d’Anal. Math., 74, 183–212 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  21. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, 415–426 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Koosis, Introduction to Hp spaces. Cambridge Tracts in Mathematics, 115. Cambridge University Press, Cambridge (2008).

  23. D. A. Kovtonyuk, I. V. Petkov, and V. I. Ryazanov, “On the Dirichlet problem for the Beltrami equations in finitely connected domains,” Ukr. Math. J., 64(7), 1064–1077 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Kovtonyuk, I. Petkov, V. Ryazanov, and R. Salimov, “On the Dirichlet problem for the Beltrami equation,” J. d’Anal. Math., 122, 113–141 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  25. O. Lehto, Homeomorphisms with a prescribed dilatation. Lecture Notes in Math., 118, 58–73 (1968).

  26. O. Lehto and K.I. Virtanen, Quasiconformal mappings in the plane. Die Grundlehren der mathematischen Wissenschaften, 126. Springer, Berlin-Heidelberg-New York (1973).

  27. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory. New York, Springer (2009).

    MATH  Google Scholar 

  28. O. Martio, V. Ryazanov, and M. Vuorinen, “BMO and Injectivity of Space Quasiregular Mappings,” Math. Nachr., 205, 149–161 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Nevanlinna, Eindeutige analytische Funktionen. 2. Aufl. Reprint. (German). Die Grundlehren der mathematischen Wissenschaften. Band 46. Springer-Verlag, Berlin–Heidelberg–New York (1974).

  30. D. K. Palagachev, “Quasilinear elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 347(7), 2481–2493 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  31. M. A. Ragusa, “Elliptic boundary value problem in vanishing mean oscillation hypothesis,” Comment. Math. Univ. Carolin, 40(4), 651–663 (1999).

    MathSciNet  MATH  Google Scholar 

  32. M. A. Ragusa and A. Tachikawa, “Partial regularity of the minimizers of quadratic functionals with VMO coefficients,” J. Lond. Math. Soc., II. Ser., 72(3), 609–620 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  33. Th. Ransford, Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Univ. Press, Cambridge (1995).

  34. H. M. Reimann and T. Rychener, Funktionen Beschränkter Mittlerer Oscillation, Lecture Notes in Math., 487 (1975).

  35. V. I. Ryazanov and R. R. Salimov, “Weakly planar spaces and boundaries in the theory of mappings,” Ukr. Mat. Visn., 4(2), 199–234 (2007); transl. in Ukr. Math. Bull., 4(2), 199–234 (2007).

    MathSciNet  Google Scholar 

  36. V. Ryazanov, R. Salimov, U. Srebro, and E. Yakubov, “On boundary value problems for the Beltrami equations,” Contemporary Math., 591. Israel Math. Conf. Proc., 211–242 (2013).

  37. V. Ryazanov, U. Srebro, and E. Yakubov, “BMO-quasiconformal mappings,” J. d’Anal. Math., 83, 1–20 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Ryazanov, U. Srebro, and E. Yakubov, “On ring solutions of Beltrami equations,” J. d’Anal. Math., 96, 117–150 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Ryazanov, U. Srebro, and E. Yakubov, “Beltrami equation and FMO functions,” Contemp. Math., 382, Israel Math. Conf. Proc., 357–364 (2005).

  40. V. Ryazanov, U. Srebro, and E. Yakubov, “Finite mean oscillation and the Beltrami equation,” Israel Math. J., 153, 247–266 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Ryazanov, U. Srebro, and E. Yakubov, “On the theory of the Beltrami equation,” Ukr. Mat. Zh., 58(11), 1571–1583; transl. in (2006). Ukr. Math. J., 58(11), 1786–1798 (2006).

  42. V. Ryazanov, U. Srebro, and E. Yakubov, “Integral conditions in the theory of the Beltrami equations,” Complex Var. Elliptic Equ., 57(12), 1247–1270 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  43. E. B. Saff and V. Totik, Logarithmic potentials with external fields. Grundlehren der Mathematischen Wissenschaften, 316. Springer, Berlin (1997).

  44. D. Sarason, “Functions of vanishing mean oscillation,” Trans. Amer. Math. Soc., 207, 391–405 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  45. E. H. Spanier, Algebraic topology, Springer-Verlag, Berlin (1995).

    MATH  Google Scholar 

  46. U. Srebro and E. Yakubov, Beltrami equation. In: Handbook of complex analysis: geometric function theory (ed. Kühnau R.), V. 2, 555–597, Elsevier/North Holland, Amsterdam (2005).

  47. S. Stoilow, Lecons sur les Principes Topologue de le Theorie des Fonctions Analytique. Gauthier-Villars (1938).

    Google Scholar 

  48. W. Tutschke ans H. L. Vasudeva, An introduction to complex analysis. Classical and modern approaches. Modern Analysis Series, 7. Boca Raton, FL, Chapman–Hall/CRC (2005).

  49. I. N. Vekua, Generalized analytic functions. Pergamon Press, London (1962).

    MATH  Google Scholar 

  50. N. Wiener, “The Dirichlet problem,” Mass. J. of Math., 3, 129–146 (1924).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gutlyanskii.

Additional information

Dedicated to the memory of Professor Uri Srebro (1936–2016)

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 19, No. 3, pp. 327–354, July–September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutlyanskii, V., Ryazanov, V., Sevost’yanov, E. et al. BMO and Dirichlet Problem for Degenerate Beltrami Equation. J Math Sci 268, 157–177 (2022). https://doi.org/10.1007/s10958-022-06189-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06189-w

Keywords

Navigation