Skip to main content
Log in

Correct Solvability of the Cauchy Problem and Integral Representations of the Solutions for Ultraparabolic Kolmogorov-Type Equations with Two Groups of Spatial Variables of Degeneration

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We establish some properties of the classical fundamental solution of the Cauchy problem for an inhomogeneous ultraparabolic Kolmogorov-type equation with two groups of spatial variables of degeneration, as well as the properties of the volume potential generated by this solution. We also present some theorems on the integral representation of the solutions and correct solvability of the Cauchy problem, obtained in the appropriate classes of weight functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Dron’ and S. D. Ivasyshen, “On the correct solvability of the Cauchy problem for Kolmogorov-type degenerate parabolic equations,” Ukr. Mat. Visn., 1, No. 1, 61–68 (2004).

    MathSciNet  Google Scholar 

  2. S. D. Ivasyshen, “Integral representation and initial values of solutions of \( \overrightarrow{2b} \)-parabolic systems,” Ukr. Mat Zh., 42, No. 4, 500–506 (1990); English translation: Ukr. Math. J., 42, No. 4, 443–448 (1990)

  3. S. D. Ivasyshen, “Solutions of parabolic equations from the families of Banach spaces that depend on time,” Mat. Studii, 40, No. 2, 172–181 (2013).

    MathSciNet  MATH  Google Scholar 

  4. S. D. Ivasyshen and I. P. Medyns’kyi, “The classical fundamental solution of the Kolmogorov degenerate equation whose coefficients are independent of the variables of degeneration,” Bukov. Mat. Zh., 2, Nos. 2-3, 94–106 (2014).

    MATH  Google Scholar 

  5. S. D. Ivasyshen and I. P. Medyns’kyi, “Classical fundamental solutions of the Cauchy problem for Kolmogorov-type ultraparabolic equations with two groups of spatial variables,” in: Differential Equations and Related Problems of Analysis [in Ukrainian], Proc. of the Institute of Mathematics, National Academy of Sciences of Ukraine, 13, No. 1, Kyiv (2016), pp. 108–155.

  6. S. D. Ivasyshen and I. P. Medyns’kyi, “On the classical fundamental solutions of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of spatial variables,” Mat. Met. Fiz.-Mekh. Polya, 59, No. 2, 28–42 (2016); English translation: J. Math. Sci., 231, No. 4, 507–526 (2018); https://doi.org/10.1007/s10958-018-3830-0.

  7. S. D. Ivasyshen and I. P. Medyns’kyi, “Classical fundamental solutions of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of spatial variables. I,” Mat. Met. Fiz.-Mekh. Polya, 60, No. 3, 9–31 (2017); English translation: J. Math. Sci., 246, No. 2, 121–151 (2020); https://doi.org/10.1007/s10958-020-04726-z.

  8. S. D. Ivasyshen and I. P. Medyns’kyi, “Classical fundamental solutions of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of spatial variables. II,” Mat. Met. Fiz.-Mekh. Polya, 60, No. 4, 7–24 (2017).

    Google Scholar 

  9. S. D. Ivasyshen and I. P. Medyns’kyi, “Properties of fundamental solutions, theorems on integral representations of solutions and correct solvability of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of space variables of degeneration,” Mat. Met. Fiz.-Mekh. Polya, 61, No. 4, 7–16 (2018); English translation: J. Math. Sci., 256, No. 4, 363–374 (2020); https://doi.org/10.1007/s10958-021-05432-0.

  10. N. P. Protsakh and B. I. Ptashnyk, Nonlinear Ultraparabolic Equations and Variational Inequalities [in Ukrainian], Naukova Dumka, Kyiv (2017).

  11. S. D. Éidelman, “Fundamental matrices of solutions of the general parabolic systems,” Dokl. Akad. Nauk SSSR, 120, No. 5, 980–983 (1958).

    MathSciNet  Google Scholar 

  12. S. D. Éidelman, “On the fundamental solutions of parabolic systems. II,” Mat. Sb., 53, No. 1, 73–126 (1961).

    MathSciNet  Google Scholar 

  13. S. D. Éidelman, Parabolic Systems [in Russian], Nauka, Moscow (1964).

  14. G. Citti, A. Pascucci, and S. Polidoro, “On the regularity of solutions to a nonlinear ultraparabolic equations arising in mathematical finance,” Differ. Integral Equat., 14, No. 6, 701–738 (2001).

    MathSciNet  MATH  Google Scholar 

  15. M. Di Francesco and A. Pascucci, “A continuous dependence result for ultraparabolic equations in option pricing,” J. Math. Anal. Appl., 336, No. 2, 1026–1041 (2007); https://doi.org/10.1016/j.jmaa.2007.03.031.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Di Francesco and A. Pascucci, “On a class of degenerate parabolic equations of Kolmogorov type,” Appl. Math. Res. Express, 2005, No. 3, 77–116 (2005); https://doi.org/10.1155/AMRX.2005.77.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. D. Eidelman and S. D. Ivasyshen, “On solutions of parabolic equations from families of Banach spaces dependent on time,” in: V. M. Adamyan, et al., Differential Operators and Related Topics. Operator Theory: Advances and Applications, Birkhäuser, Basel (2000), pp. 111–125; https://doi.org/10.1007/978-3-0348-8403-7_10.

  18. S. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, Birkhäuser, Basel (2004); https://doi.org/10.1007/978-3-0348-7844-9.

  19. P. Foschi and A. Pascucci, “Kolmogorov equations arising in finance: direct and inverse problems,” Lect. Notes Semin. Interdisciplin.. Mat.. Univ. Studi Basilicata, VI, 145–156 (2007).

  20. S. D. Ivasishen and I. P. Medynsky, “The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes,” Theory Stoch. Proc., 16(32), No. 1, 57–66 (2010).

  21. S. D. Ivasyshen and I. P. Medynsky, “On applications of the Levi method in the theory of parabolic equations,” Mat. Studii, 47, No. 1, 33–46 (2017); 10.15330/ms.47.1.33-46.

  22. A. Kolmogoroff, “Zufällige Bewegungen (Zur Theorie der Brownschen Bewegung),” Ann. Math., 35, No. 1, 116–117 (1934); https://doi.org/10.2307/1968123.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Lanconelli and S. Polidoro, “On a class of hypoelliptic evolution operators,” Rend. Sem. Mat. Univ. Politec. Torino. Part. Diff. Eq., 52, No. 1, 29–63 (1994).

    MathSciNet  MATH  Google Scholar 

  24. A. Pascucci, “Kolmogorov equations in physics and in finance,” in: H. Brezis (editor), Elliptic and Parabolic Problems, Birkhauser, Basel (2005).

  25. S. Polidoro, “On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type,” Le Matematiche, 49, No. 1, 53–105 (1994).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Medynsky.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 62, No. 4, pp. 39–48, October–December, 2019.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medynsky, I.P. Correct Solvability of the Cauchy Problem and Integral Representations of the Solutions for Ultraparabolic Kolmogorov-Type Equations with Two Groups of Spatial Variables of Degeneration. J Math Sci 265, 382–393 (2022). https://doi.org/10.1007/s10958-022-06059-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-06059-5

Keywords

Navigation